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Abstract 

 

 Fractured aquifers are a valuable source of groundwater throughout the world.  

Fractures often serve as major conduits for movement of water and dissolved chemicals 

through impermeable or low permeability rock.  Unfortunately, the ease with which water 

and chemicals are transmitted through fractures leaves fractured aquifers vulnerable to 

pollution from a range of industrial and agricultural activities.   

 Of concern to the Department of Defense (DoD) is that a number of major US 

military installations, such as Ramstein Air Base (AB) and Spangdahalem AB, Germany 

and Osan AB, Republic of Korea, are located above contaminated fractured aquifers.  In 

addition, a number of former DoD installations, such as Pease Air Force Base (AFB), 

New Hampshire, and Loring AFB, Maine, are located above fractured aquifers and are 

contaminated to such an extent that they have been placed on the National Priority List 

for cleanup under the Superfund program. 

 This study focused on reviewing the current state-of-the-art of modeling 

groundwater flow and contaminant transport in fractured media.  Such models can be 

used to aid our understanding of the physical, chemical, and biological processes that 

affect contaminant transport in fractured media, as well as help us design systems to 

remediate contaminated fractured sites.  After reviewing available models, the hybrid 

discrete fracture network/equivalent porous medium (DFN/EPM) model was selected for 

further analysis.  The DFN/EPM model was selected because it appeared to have the 

potential to aid decision making by remedial project managers at contaminated DoD 

fractured aquifer sites.   This model can use data that are typically available at a site while 

incorporating the important processes relevant to describing contaminant transport in a 

fractured medium. 
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 The model was applied to simulate the operation of a pump-and-treat remedial 

action at a trichloroethene-contaminated fractured aquifer at Pease AFB.  The model was 

able to simulate the salient characteristics of hydraulic and contaminant data collected at 

the site during operation of the remediation pump-and-treat system.  The model was then 

used to evaluate the impact of various pump-and-treat system designs on contaminant 

containment at the site.   Based on these model simulations, the potential benefits to site 

managers of using the DFN/EPM approach to model groundwater flow and contaminant 

transport at fractured aquifer sites were demonstrated.    
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MODELING GROUNDWATER FLOW AND CONTAMINANT TRANSPORT IN 

FRACTURED AQUIFERS 

1  Introduction 

 

 

1.1  Motivation 

 Fractured aquifers are a valuable source of groundwater throughout the world.  

These aquifers have the capacity to store large volumes of water and to deliver 

groundwater to wells through a network of fractures.  Fractures often serve as major 

conduits for movement of water and dissolved chemicals through hard rocks in the 

subsurface.  Unfortunately, the ease with which water and chemicals are transmitted 

through fractures leave fractured aquifers vulnerable to pollution from a range of 

industrial and agricultural activities (Wealthall et al., 2003).  Throughout the world, 

groundwater resources are faced with an unprecedented risk of contamination due to 

subsurface releases of organic chemicals such as chlorinated solvents and petroleum 

hydrocarbons.  In the United States (U.S.) alone, releases of gasoline fuels may have 

occurred at more than 250,000 sites, potentially threatening over 9,000 large municipal 

water supply wells (Einarson and Mackay, 2001).   

 Of concern to the Department of Defense (DoD) is that a number of major US 

military installations, such as Ramstein Air Base (AB), Germany; Spangdahalem AB, 

Germany; and Osan AB, Republic of Korea; are located above contaminated fractured 

aquifers.  In addition, a number of closed bases such as Pease Air Force Base (AFB), 

New Hampshire, and Loring AFB, Maine, are located above fractured aquifers and are 

contaminated to such an extent that they have been placed on the National Priority List 
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for cleanup under the Superfund program.  Dissolution of pollutants in fractured aquifers 

can lead to dissolved plumes with contaminant concentrations that can exceed drinking 

water standards (Wealthall et al., 2003).  At Osan AB, chlorinated solvents such as 

trichloroethylene (TCE) have been detected in groundwater wells at concentrations of 83 

µg/L; 17 times greater than its maximum concentration level (MCL) under the Safe 

Drinking Water Act (Osan AB CE, 2001).  TCE has been found to cause vomiting and 

abdominal pain at levels above the MCL, and it has the potential to cause liver damage 

and cancer with prolonged exposure above the MCL (EPA, 2002).  This is of particular 

concern because the wells at Osan AB are needed for surge operations should U.S. forces 

build up their presence on the Korean peninsula (Staples, 2002).  Pease AFB has detected 

TCE in groundwater at concentrations of over 100 mg/L (MWH, 2004).  Ramstein AB 

has a dissolved plume of TCE advancing through its fractured aquifer with the potential 

to cross the installation boundary (Ramstein AB CE, 2003).  In addition, former military 

installations that have been closed, such as Pease and Loring AFB, require a substantial 

amount of cleanup before the property can be turned over for civilian use. 

 Over the last several decades, models have been increasingly used to aid 

subsurface remediation decision making.  These models are based on Henri Darcy’s 1857 

law describing flow in porous media.  Due in large part to the complexity of flow in 

fractured rock systems, the state-of-the-art of modeling such fractured flow has 

significantly lagged the state-of-the-art of modeling porous media flow (USEPA, 2002).    

 Driven in large part by advances in computer resources, great strides in numerical 

modeling of groundwater systems have been made in recent years (Hassan, 2004).  With 

these advances in computers and our increased knowledge of flow and transport behavior 
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in fractured systems, attempts can now be made to deal with these more complex 

problems.  It would be hoped that fractured flow and transport models can be developed 

to become practical aids to decision making in the same way that porous media models 

are.  Having the ability to model water flow and contaminant transport in fractured 

aquifers would provide scientists, engineers, and decision makers involved in the 

assessment and remediation of groundwater pollution with a useful tool that they can use 

to develop containment and cleanup strategies. 

 

1.2 Background 

 

 Fractured rock sites are among the most complex because of their considerable 

geologic heterogeneity and the nature of fluid flow and contaminant transport through the 

fractured material.  Relative to most unconsolidated media, characterization of 

contaminant transport in fractured rock requires more information to provide a similar 

level of understanding (EPA, 2001).  Therefore, modeling of contaminant transport 

within fractured rock is a significant challenge (Wealthall et al., 2003).  Contaminant 

transport in fractured rock is governed by advection, dispersion, diffusion, and biological 

and chemical reactions.  These are the same processes that govern transport in granular 

media, but transport in fractured systems depends more heavily on the physical makeup 

of the rock matrix.  Most fractured rock systems consist of solid rock mass intersected by 

fractures (Figure 1.1). 
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Figure 1.1:  Representation of fractures within the rock matrix (From Schwartz and 

Zhang, 2003) 

 

 Fractures provide conduits for the movement of groundwater and contaminants 

through a relatively impermeable rock mass.  The water in the rock matrix is assumed to 

be stagnant, but can act as storage for dissolved contaminants as they diffuse from the 

flowing fracture into the matrix blocks (EPA, 2002).  For many of the same reasons that 

we have been motivated over the past several decades to develop confidence in our 

ability to model flow and chemical transport in porous media, we now need to develop 

confidence in our abilities to model flow and transport in fractured media.    

 Modeling flow and transport in fractured rocks is relatively complex because the 

fractures can be as difficult to observe and characterize as they are to represent in a 

numerical model.  Alternative modeling approaches infer properties, represent fractures, 

and resolve scale dependencies in different ways (Selroos et al., 2002).  This research 
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will look at the current state-of-the-art of fractured flow models and choose one or more 

to evaluate. 

 Stochastic continuum modeling of groundwater flow in fracture rock assumes 

that, over some representative volume, the fractured media may be represented as an 

equivalent homogenous porous medium with groundwater flow governed by Darcy’s law 

(Selroos et al., 2002).  Past thesis research (Staples, 2002) has shown that the equivalent 

porous medium (EPM) model may be appropriate for application in some fractured 

systems.    

 Recently, models have been developed that explicitly account for the geometry of 

each fracture, making it possible to simulate field-scale flow and transport involving 

thousands of fractures (Wellman and Poeter, 2003).  These so-called discrete fracture 

network (DFN) models are based on the premise that groundwater flow and transport in 

rocks occur primarily within fractures.  This approach simulates individual fractures in 

the rock and then solves the equations that describe groundwater flow and contaminant 

transport in the interconnected system of fractures (Selroos et al., 2002).   

 

1.3  Research Objective 

 Understanding flow and transport in fractured rock is essential for assessing the 

groundwater resources of fractured aquifers and predicting the movement of hazardous 

chemicals if and when contamination occurs (Department of the Interior, 2004).  The 

goal of this research is to ascertain if currently available models can be used as tools in 

managing groundwater contamination in fractured aquifers.  The research will focus on 

answering the following questions: 
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1.  What models are currently available to simulate dissolved contaminant 

transport in fractured media? 

2.  What criteria may be used to decide whether a model is applicable for use at a 

particular contaminated fractured site?  Are the necessary data 

(hydrogeologic, monitoring, etc.) available at a typical DoD hazardous waste 

site?  

3.  Given the state-of-the-art of fractured system modeling, how confident are we 

in the ability of these models to “adequately” simulate transport in fractured 

systems? 

4.  How might a fractured system model be used to manage contaminated 

fractured media sites? 

 

1.4  Research Methodology 

 In order to effectively answer the above questions, the step-by-step method 

outlined below will be followed. 

1.  Conduct a literature review to investigate characteristics of fractured aquifers 

and the state-of-the-art of fractured transport modeling. 

2.  After selecting an appropriate fractured model that can be applied to a 

reasonably well-characterized site, build confidence in the model by using it 

to simulate hydrologic and contaminant data from the site.  Such data may be 

available from Ramstein AB, Spangdahalem AB, Osan AB, Loring AFB, and 

Pease AFB. 
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3.  Using data from the fractured site (either the same site that was used in step 3 

or a different site), demonstrate how the model could be applied to manage 

contamination at the site.  

 

1.5  Scope and Limitations 

 This research is limited to the evaluation of models specifically applicable to 

modeling flow and transport within fractured aquifers.  The results of this study will 

provide scientists, engineers, and decision makers with information on model 

performance and ease of use.  Specific limitations are as follows: 

1.  Contaminant and hydrogeologic data from DoD installations residing over fractured 

media are somewhat limited.  Therefore, data that are available will be used to make 

generalizations regarding contaminant hydrogeology. 

2.  This study will be restricted to available data.  There will be no new field 

investigations. 

3.  There will be a single interpretation of the site with a well defined domain.  There will 

be a controlled data set with specific values of key parameters. 

4.  This study will only use the selected model and personal experience of contributing 

parties and will not involve any optimization. 
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2  Literature Review 

 

 

2.1  Introduction 

 

 Groundwater is one of the United States’ most important natural resources.  

Roughly one-half of the population relies on groundwater for drinking and other domestic 

purposes, and over 40% of irrigation water is supplied from groundwater (Konikow, 

1995).  Data collected on water use in the United States show increasing groundwater 

withdrawals, and from 1950 to 1990, withdrawals have doubled from 34 to 79.4 billion 

gallons per day (Solley et al., 1993). 

 With the nation’s increased demand for water, communities are turning to 

fractured aquifers for supply.  Much of the Northeast, Southeast, and mountain West rely 

heavily on fractured aquifers for groundwater supply (USGS, 2004).  Understanding 

groundwater flow and contaminant transport in these aquifers is an area of research that is 

rapidly gaining importance.  Historically, groundwater research has focused on flow and 

transport in porous media rather than in fractured rock systems.  The theory of flow 

through porous media began with the publication of Henri Darcy’s experimental work in 

1857 (USEPA, 2002).  By comparison, the first comprehensive study of fractured flow 

was sponsored in 1950 by the oil industry to aid their attempts to increase oil production 

by fracturing the reservoir (Gale, 1982).  

 The importance of understanding flow and transport in fractured systems is of 

growing concern to the Department of Defense (DoD) and the United States Air Force 

(USAF).  Information provided by the Citizen’s Clearinghouse for Hazardous Waste 

states the DoD may be the largest hazardous waste generator in the country (Bedient et 
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al., 1999).  The DoD produces over one billion pounds of hazardous waste per year, 

which is more than the combined production of the top five civilian chemical companies.  

The USAF alone estimates there are more than 4,300 waste sites at over 100 of their 

bases (Bedient et al., 1999).  The contamination at a number of these sites is so severe 

that the bases have been placed on the National Priority List as Superfund sites.  The 

Strategic Environmental Research and Development Program (SERDP) and the DoD 

Environmental Security Technology Certification Program (ESTCP) estimate that 1/3 of 

the DoD chlorinated solvent contaminated sites, including two large Superfund sites at 

Pease and Loring Air Force Bases, reside over fractured aquifers.  Because of the scope 

of the problem of contaminated fractured aquifers within the DoD, SERDP and ESTCP 

have encouraged research that will result in models and increased understanding of 

fractured flow and transport (SERDP/ESTCP, 2002). 

 

2.2  Background 

 To support sound decisions by managers tasked with dealing with contaminated 

fractured aquifer systems, an understanding of fluid flow and contaminant transport in 

those systems is critical.  Fractured geological formations are common throughout the 

world and are of interest in a number of contexts:  water supply exploitation, subsurface 

contamination, and petroleum reservoir development to name a few.  In this study, we 

will focus on hydrogeological issues related to water quantity and quality.  Fractures are 

the principal pathways for flow and transport of water and contaminants through 

otherwise impermeable or low permeability rocks.  We will review the physical factors 

that control flow and transport behaviors, examine common models used to describe the 
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behaviors, and discuss the integration of conceptual pictures, models, and data 

(Berkowitz, 2002).  In the following section, we review the properties of fractured rock 

and the physical factors that control flow and transport through this type of media. 

 

2.2.1  Properties of Fractured Rock 

 Fractured rock, such as limestone, siltstone, shale, and basalt, may be described as 

intact rock bodies separated by discontinuities (or fractures) (Domenico and Schwartz, 

1998).  For the purposes of this study, fractures refer to all cracks, fissures, joints, and 

faults that may be present in a formation and have the ability to transmit water and 

contaminants through discrete channels that may be interconnected to form an integrated 

system.  Major factors affecting groundwater flow through fractured rock include fracture 

density, orientation, effective aperture width, and the nature of the rock matrix.  Fracture 

density (number of fractures per unit volume of rock) and orientation are important 

determinants of the degree of interconnectedness of fracture sets, which is a critical 

feature contributing to the hydraulic conductivity of a fractured rock system 

(Witherspoon et al., 1987).   

 Only interconnected fractures provide pathways for groundwater flow and 

contaminant transport.  Figure 2.1 illustrates the importance of fracture connectivity in 

rock.  In figure 2.1a, there are numerous clusters of fractures, yet none of the clusters are 

connected, thus this system, although highly fractured, prevents groundwater flow 

through the system.  Figure 2.1b shows clusters of fractures that are connected, which 

suggests groundwater flow is possible through this system (Domenico and Schwartz, 

1998).  Fractures oriented parallel to the hydraulic gradient are more likely to provide 
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effective pathways than fractures oriented perpendicular to the hydraulic gradient (EPA, 

2002). 

 

 

Figure 2.1:  Connectivity in fractured media.  (a) Unconnected fractures with 

minimal flow and (b) connected clusters that would support fractured flow (From 

Domenico and Schwartz, 1998) 

 

 The rock matrix (see Figure 2.2) plays an important role in the movement of 

water and contaminants through fractured rock systems.  In essence, the rock matrix is a 

system of numerous fractures surrounded by an unfractured rock mass.  The unfractured 

rock mass accounts for much of the porosity (storage) of the medium but little of the 

permeability (defined as the ability of a material to transmit fluids through its pores when 

subjected to pressure or a difference in head).  Conversely, fractures may have negligible 

storage, but high permeability (Diodato, 1994).   
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Figure 2.2:  Schematic diagram of rock matrix system (From Schwartz and Zhang, 

2003) 

 

 High porosity within the matrix would allow for significant storage of water and 

contaminants.  Fractures account for the majority of permeability within the system and 

allow significant flow of water through the system.  Rates of contaminant migration into 

and out of the rock matrix will depend on the porosity of the matrix and the matrix 

diffusion coefficient of the contaminant (EPA, 2002). 

 A complete description of a contaminated fractured rock system would include a 

tremendous amount of data.  Information would include the length, aperture width, 

location, and orientation of fractures; the hydraulic head throughout the system; the 

porosity and permeability of the rock matrix; the sources of water and contaminants; the 

nature and concentrations of the contaminants throughout the system; and the chemical 

interactions between the contaminants and the rock matrix (EPA, 2002).  Currently, the 
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collection of such detailed information is technically impossible on the scale of most 

contaminated sites.  In general, the more detailed the site characterization, the greater the 

probability of success in modeling the site.  The accuracy of flow and transport modeling 

in fractured rock systems is highly dependent on the accuracy and extent of site 

characterization data (EPA, 2002). 

 

2.2.2  Flow in Fractured Rock 

 The first comprehensive study dealing with flow through open fractures was done 

by Lomize (1951).  The study tried to experimentally determine the relationship between 

flow through a simple fracture and fracture properties.  Based on the study, it was 

determined that the local flow rate through a single fracture is dependent on the hydraulic 

conductivity of the fracture, whether flow is laminar or turbulent (i.e., the value of the 

Reynolds’ number), the fracture aperture width, and the roughness of the fracture walls 

(Thiel, 1989). 

 Flow through a fracture is generally idealized as laminar flow between a pair of 

smooth, parallel plates.  This idealization results in the “cubic law,” (see equation 1)  

T fr
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⋅ K fr b⋅
…………………………………………………………….(1) 

which states that the transmissivity (Tfr) or hydraulic conductivity (Kfr) of a fracture can 

be determined from the fracture aperture width (b), the fluid density (ρ) and viscosity (µ), 

and the gravitational constant of acceleration (g).  It is also noted that (b
3
/12) represents 

the permeability of the fracture (Snow, 1965).  This relationship was theoretically 



   

14 

deduced assuming that fluid percolates through a smooth aperture under saturated, 

laminar, incompressible flow conditions (Lee and Farmer, 1993).   

 As seen in Equation 1, the cubic law relates the local flow rate through the 

fracture to the cube of the fracture aperture width (Snow, 1965).  The equation assumes 

matrix permeability is negligible, and as a result, assumes all flow occurs through the 

fracture (Witherspoon et al., 1980).  A full derivation of the cubic law can be found in 

Bear et al. (1993). 

 The validity of the cubic law has been the subject of much debate over the years.  

A number of laboratory experiments (Durham and Bonner, 1994; Keller et al., 1995; 

Vandergraaf, 1995) and field studies (Rasmuson and Neretnieks, 1986; Novakowski et 

al., 1985) on flow through fractures indicate the cubic law may not be adequate to 

describe flow.  Gale and Raven (1980) showed the cubic law is not applicable when 

deformable natural discontinuities lead to varying contact area that result in significant 

changes in the flow rate.  Gale et al. (1985) showed that when fracture surfaces are not in 

contact (i.e., natural deformations of the fracture walls do not touch) existing laboratory 

data supported the use of the cubic law with appropriate corrections for roughness.  

Tsang (1984) experimentally showed a one to two order-of- magnitude error in 

estimating flow if the tortuosity of the flow path is neglected.    

 The cubic law has been extended over the years, to account for surface roughness 

and seepage into the rock matrix (Basha and El-Asmar, 2003).  However, though more 

advanced conceptual models have been introduced in recent years, an alternative to the 

cubic law has yet to be generally accepted (Berkowitz, 2002). 

 



   

15 

2.2.3  Solute Transport in  Fractured Rock 

 Measurement and quantitative analysis of solute transport in fractured systems 

remains one of the most challenging problems in subsurface hydrology (Berkowitz, 

2002).  This section will discuss the various approaches that have been used to quantify 

transport of contaminants within fractured systems.  Both conservative and reactive 

solute transport will be discussed. 

2.2.3.1  Conservative Solute Transport 

 The principal modeling approach applied to quantify transport of conservative 

solutes is the classic advection-dispersion equation (ADE) (Berkowitz, 2002).  Although 

use of the ADE is convenient, Becker and Shapiro (2000) have shown that breakthrough 

curves in fractures exhibit behavior different than the classic S-shaped breakthrough 

curves predicted by the ADE for transport in homogeneous media.  The breakthrough 

curves in fractured media typically exhibit early initial arrival times, with one or more 

sudden jumps in concentration, and/or long tails.   

 In fractured rock, the overall permeability of the fractures is generally larger than 

that of the rock matrix.  As a result, fluid and contaminant velocities are significantly 

higher within the fractures, and the solute may bypass the matrix and migrate further 

downstream.  Advection is generally assumed to dominate the system (Berkowitz, 2002).  

The diffusive interaction between fracture and matrix exerts a strong control on solute 

movement and can account for retardation of the contaminant; however, the significance 

of this interaction in the field is not well known (NRC, 2001).   

 Another important feature of transport in fractured domains is complex 

dispersion.  In general, dispersion is assumed negligible due to the dominance of 
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advective transport in fractures (Berkowitz, 2002; Kim et al., 2004).  de Josselin de Jong 

and Way (1972) and Way and Mckee (1981) provided a theoretical analysis of dispersion 

in fractured media.  Their system consisted of two sets of fractures equally spaced, 

infinite in length, and having constant aperture width.  Their results showed dispersion 

was complex with directions of spreading at angles to the direction of mean flow.  Gelhar 

et al. (1992) and Schwartz and Smith (1988) performed similar studies with 

discontinuous fractures of finite length and variable aperture width and confirmed the 

complex behavior of dispersion whereby the evolution of a migrating plume cannot be 

quantified by a constant center of mass velocity and constant dispersion coefficients, as is 

typically done to characterize advective/dispersive transport in porous media. 

 Recently, Berkowitz and Scher (1997, 1998) introduced continuous time random 

walk (CTRW) theory to quantify transport in fractured and heterogeneous porous media.  

CTRW theory accounts for this complex (non-Fickian) dispersion behavior that cannot be 

properly quantified by the use of the ADE.  CTRW simulates contaminant migration as 

particles traverse different paths with spatially changing velocities.  This kind of behavior 

is represented by a joint probability density function, ψ(s,t), which describes each particle 

“transition” over a distance, s,  in time, t.  The CTRW theory appears to be a promising 

means to quantify a wide range of dispersive transport behavior in fractures (Berkowitz, 

2002). 

 Another transport issue is describing the behavior of solute at fracture junctions.  

In general, either complete mixing or streamline routing is assumed (Park et al., 2003).  

The complete mixing idealization assumes the residence time of solute at an intersection 

is long enough to ensure equal solute concentrations in the outlet branches.  The 
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streamline routing assumption allows the solute to move along streamlines without any 

mixing (Wilson and Witherspoon, 1976).  Park et al. (2003) assessed the importance of 

fracture intersection mixing assumptions on simulated solute migration patterns.  

Comparison of the outcomes showed that solute transport is strongly influenced by the 

geometry of the network and the choice of mixing assumptions at fracture intersections is 

of little importance. 

 Field scale tracer tests have been carried out over the last two decades and 

demonstrated that even highly detailed geological and hydraulic characterization of 

fractured formations is generally insufficient to allow reliable, quantitative prediction of 

solute migration (Smellie and Laaksoharju, 1992; Hadermann and Heer, 1996).  The 

degree of fracture connectivity is extremely difficult to characterize, and leads to 

unexpected appearance of tracers at some wells and anomalous arrival times at other 

wells.  As such, the ability of available models to simulate solute transport remains the 

subject of continued debate (Berkowitz, 2002).   

2.2.3.2  Reactive Solute Transport 

 The vast majority of studies on solute transport in fractured media have focused 

on the behavior of conservative chemicals.  In addition to the physical transport 

mechanisms discussed in the previous section, there are a wide range of reactive transport 

mechanisms present within a fracture, along the fracture walls, and/or within the adjacent 

porous rock matrix.  These processes include adsorption/desorption, 

dissolution/precipitation, radionuclide decay, organic reactions and volatilization, and/or 

biotransformation.  Most studies to date have focused on the influence of 
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adsorption/desorption mechanisms on solute transport in fractured media (Berkowitz, 

2002) and this mechanism will be reviewed here. 

 Freeze and Cherry (1979) developed a simple model accounting for adsorption 

along planar fracture walls.  A retardation factor is defined based on the product of a 

distribution coefficient, Ka, and the surface to void space ratio, A.  Ka is defined as the 

mass of solute on the solid phase per unit area of solid phase divided by the concentration 

of solute in solution.  Therefore, the retardation equation for fractured systems becomes: 

R = 1 + AKa…………………………………………………………………….……..…(2) 

If the fracture aperture width, b, can be determined, and the fracture surface is assumed to 

be planar, A= 2/b.  Although Equation 2 is simple in conceptual terms, it is difficult to 

apply to field systems.  Fracture surfaces usually are non-planar, and without elaborate 

experimental effort, the actual surface area with which the contaminant reacts is unknown 

(Freeze and Cherry, 1979).   

 More sophisticated models must be developed to account for sorptive transport in 

fractured media in a computationally tractable manner.  In general, the state-of-the-art is 

to assume a single, overall retardation coefficient for the fractured system (Berkowitz, 

2002). 

 

2.3  Modeling Methods 

 As stated in section 2.1, SERDP and ESTCP have called for research to better 

understand and model fractured flow and transport (SERDP/ESTCP, 2002).  In order to 

deal with the wide variety of flow and transport problems associated with fractured 

systems, a number of modeling approaches have been developed.  These models can 
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account for a range of possible fracture distributions, hydraulic characteristics, rock 

matrix properties, and flow and transport processes.  These modeling approaches are 

typically divided into two classes:  continuum models and discrete fracture models 

(Berkowitz, 2002).  Flow in fractured media is typically simulated using one or more of 

the following conceptual models:  (1) equivalent porous medium (EPM), (2) dual 

continuum, (3) triple continuum, (4) discrete fracture network (DFN), or (5) hybrid 

DFN/EPM approaches.  Following a short review on model development, each of these 

models is discussed in detail below. 

 

2.3.1  Model Development 

 A groundwater model is designed to represent a simplified version of an actual 

field site.  It attempts to translate our understanding of physical, chemical, and biological 

processes into mathematical terms (Bedient et al., 1999).  The first step in the modeling 

process is the development of a conceptual model which consists of a description of the 

physical, chemical, and biological processes thought to govern behavior in the system 

being analyzed.  The next step is to translate the conceptual model into mathematical 

terms.  The mathematical model is a set of equations associated with certain boundary 

conditions that describe the conceptual model (Bedient et al., 1999).   

 Anderson and Woessner (1992) propose the modeling protocol summarized 

below: 

1. Establish the purpose of the model. 

2. Develop a conceptual model of the system. 

3. Select the governing equations and computer code. 
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4. Design the model.  This step involves creating the grid, selecting time parameters, 

selecting initial and boundary conditions, and estimating model parameters. 

 

5. Calibrate the designed model.  Establish that the model can reproduce field 

measured values. 

 

6. Determine the effects of uncertainty on model results.  Model parameters are 

varied to evaluate the effect on model performance. 

 

7. Verify the calibrated model.  Test model ability to reproduce field measurements. 

8. Predict results based on calibrated model. 

9. Present modeling design and results 

10. Post audit and redesign as necessary.  Compare model predictions against new 

field data which might lead to further modifications and refinements of the model. 

 

Following the above protocol increases the confidence in modeling results and allows 

scientists, engineers, and remediation project managers access to an effective decision 

making tool (Bedient et al., 1999).  

 

2.3.2  Equivalent Porous Medium (EPM) 

 The EPM approach treats the fractured rock system as if it were an 

unconsolidated porous medium.  This approach is most likely to be successful when the 

spacing of the fractures is small compared to the scale of the system being studied and 

when the fractures are interconnected (EPA, 2002).  As the name suggests, fluid flow 

through a fractured material can be simulated by representing the fractured medium as a 

porous medium with equivalent hydraulic properties (Figure 2.3).  Hydraulic parameters 

(e.g., porosity, hydraulic conductivity) are selected so the flow behavior simulated in the 

EPM represents the actual flow observed in the fractured system.   
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Figure 2.3:  Conceptual models of a fractured rock system.  Simplified network with 

aperture “b” and flow “q” from left to right and equivalent porous media model of 

field system (From Anderson and Woessner, 1992) 

 

 An EPM approach assumes the fractured material can be treated as a continuum 

and a representative elementary volume (REV) of material characterized by effective 

hydraulic parameters can be defined.  The concept of selecting an REV is illustrated in 

Figure 2.4.  The plot shows hydraulic conductivity (K) versus the sample volume.  At the 

microscopic level, as the volume increases, there is considerable fluctuation of the values 

for K.  However, when the sample becomes very large, there are no longer any significant 

variations in the value of K with respect to the volume.  This model requires that 

effective values of hydraulic conductivity, specific storage, and porosity in the fractured 

material be defined, for use in the EPM.  Values for these parameters can be derived from 

aquifer testing, estimated from water balances or inverse models, and/or calculated from 

field descriptions of fracture apertures, lengths and interconnections, and unfractured 

rock volumes and permeabilities (Anderson and Woessner, 1992). 
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Figure 2.4:  Variation in hydraulic conductivity (K) as a function of volume.  The 

dashed lines indicate where the assumption of an REV is valid.  (From Domenico 

and Schwartz, 1998) 

 

 The difficulty in applying the EPM approach arises in determining the appropriate 

size of the REV needed to define the equivalent hydraulic properties.  When fractures are 

few and far between and the hydraulic conductivity is low, the EPM method may not be 

appropriate, even with a large REV.  The EPM approach may adequately represent the 

behavior of a regional flow system, but poorly represent local conditions (Anderson and 

Woessner, 1992). 

 Pankow et al. (1986) compared two contaminated fractured rock sites.  The two 

sites differed in regard to fracture aperture, fracture spacing, matrix porosity, and matrix 

diffusion coefficient.  They concluded that the EPM approach worked well in describing 

contaminant transport in the system with small fracture spacing (high fracture density).  

In addition, the system had a high enough matrix porosity and diffusion coefficient to 
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rapidly establish matrix/fracture equilibrium. They also concluded that the EPM approach 

would not be appropriate for the other system where there was low fracture connectivity 

and density.  In this system, matrix/fracture equilibrium was not rapidly established and 

the EPM was deemed inappropriate.    

 In a similar study, Lee and Lee (1998) applied an EPM to characterize flow in a 

fractured system in South Korea.  They found that in order to use an EPM to analyze a 

fractured aquifer, three conditions must be met:  (1) small fracture spacing (high fracture 

density), (2) high fracture connectivity, and (3) random fracture orientation.  These 

criteria were tested by analyzing rock cores taken from various wells.  The cores 

contained no dominant fractures and showed high fracture densities.  In addition, pump 

test data closely matched Theis drawdown curves.  Lee and Lee (1998) concluded that 

the EPM was valid for the system.   

It has been shown that under certain scenarios, the EPM model was inadequate, 

but overall, EPM has been used with success in the past and generally models the 

response of fractured systems adequately for design purposes (NRC, 1990; EPA, 2001). 

 

2.3.3  Dual-Continuum Model 

 The dual-continuum method (see figure 2.5) has been used to characterize flow in 

fractured media.  Two subsets of this method are the dual porosity method, which 

assumes no flow between matrix blocks, and the dual permeability method, which allows 

for flow between matrix blocks (Huang et al., 2004).   
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Figure 2.5:  Conceptual models of a fractured rock system.  Simplified network with 

aperture “b” and flow “q” from left to right and dual-continuum model of field 

system (From Anderson and Woessner, 1992) 

 

 In the dual porosity model, a flow domain is composed of matrix blocks with 

negligible permeability, embedded in a network of interconnected fractures, with global 

flow and transport in the formation due only to the fracture system, which is 

conceptualized as an effective continuum (Barenblatt et al., 1960; Warren and Root, 

1963).  The model treats matrix blocks as spatially distributed sinks or sources which 

allow for diffusion of contaminant into and out of the fracture system and the fracture–

matrix interflow is treated as a quasi-steady state (Wu et al., 2004). 

 In an attempt to incorporate additional matrix–matrix interactions, the dual-

permeability model has been developed.  This type of dual-continuum model considers 

global flow occurring not only between fractures but also between matrix blocks.  In this 

approach, the fractures and the matrix are each represented by separate blocks that are 

connected to each other.  The same quasi-steady state flow assumption as that in the 

double-porosity concept is used to handle fracture–matrix interflow (Wu et al., 2004). 

 In general, the dual-continuum system is modeled as if it were composed of two 

overlapping continua with different porosities and permeabilities.  Low porosity and high 
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permeability are associated with the fractures while high porosity and low permeability 

are associated with the rock matrix.  The model allows for transfer of contaminants 

between the fractures and the rock matrix.  The fractures are considered the more 

permeable system and transmit groundwater to the well, while the less permeable rock 

matrix has a high storage coefficient and acts as a source or sink (Hamm and Bidaux, 

1996; Lee et al., 2001).   

 No account is taken of the arrangement of fractures and their relation to one 

another; instead, it is assumed there is a mixing of fluids in the interacting continua 

(NRC, 1990).  When developing this model, the proportions of fracture flow and matrix 

flow can be determined by the solution of two sets of flow equations using coupling 

parameters to represent flow between the matrix and fractures.  The systems are 

interconnected, so the loss of fluid in one porous system represents a gain in the other 

(Lee and Farmer, 1993). 

 Applicability of the dual continuum approach is generally dependent upon:  (1) 

the fractures being closely spaced relative to the size of the system, (2) relatively uniform 

distribution of fracture networks (high degree of fracture connectivity), and (3) 

knowledge of fracture and matrix properties (Preuss and Narasimhan, 1985; Wu et al., 

2004). 

  

2.3.4  Triple Continuum Model 

 The triple continuum model (see Figure 2.6) was developed to investigate the 

impact of small-scale fractures on flow and transport processes in fractured rocks.  This 

new conceptual model subdivides fractures into two types: large-scale and small-scale.  
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Large-scale fractures are those responsible for global connections, while small-scale 

fractures are those that provide large fracture storage space and enhance the local 

connections to the matrix system without contributing to global flow or transport (Wu et 

al., 2002).   

 

 

Figure 2.6:  Basic conceptualization for triple continuum approximation of a field 

system (from Wu et al., 2004) 

 

 Typically, the triple-continuum model, like the dual-continuum approach, uses an 

effective porous medium to approximate the two types of fractures and the rock matrix, 

and considers the three continua to be spatially overlapped.  Like other continuum 

approaches, the triple-continuum model relies on the assumption that approximate 

equilibrium exists (locally) within each of the three continua at all times at a given 

location (Wu et al., 2004).  The model formulation uses three sets of conservation 

equations to describe flow and transport processes at each location of the system (Wu et 

al., 2002).   
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 Wu et al. (2002, 2004) implemented the triple continuum model to examine field 

problems at Yucca Mountain, Nevada.  It was shown that in a fracture–matrix continuum 

containing both large-scale globally connected fractures and small-scale locally 

connected fractures, the main role played by the small fractures is to control fracture–

matrix interflow and transport processes by enlarging effective fracture–matrix interface 

areas and offering intermediate storage space.  The study indicated that the transient 

effects of small fractures on flow and transport is significant and cannot be generally 

ignored. 

 Wu et al. (2002, 2004) determined that if small-fracture permeability is similar to 

matrix permeability or very few small fractures exist (i.e., the small-fracture porosity is 

near zero), the triple-continuum model collapses to a dual-permeability model, and the 

traditional dual-continuum model should be used instead.  On the other hand, if small 

fractures are extensive and well connected to larger fractures, fracture–matrix equilibrium 

will be reached relatively quickly, and the fractured system may behave as an equivalent 

porous medium. 

 Introducing the third continuum to the dual-continuum model to build a triple-

continuum model requires one more fracture–matrix property set for small fractures.  

This additional property set makes the triple-continuum model more difficult to use than 

a dual-continuum model (Wu et al., 2004).    

 

2.3.5  Discrete Fracture Network (DFN) 

 According to the REV concept (see section 2.3.1), there exists a scale at which 

individual heterogeneities and discrete features can be ignored, due to a process of 
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averaging to produce an equivalent porous medium. The fundamental motivation of 

discrete fracture network (DFN) modeling is the recognition that at every scale, 

groundwater transport in fractured rocks tends to be dominated by a limited number of 

discrete pathways formed by fractures (Dershowitz et al., 2004).  Discrete fracture 

models allow quantification of many flow and transport phenomena that are not 

adequately captured by use of continuum models.  A major advantage of the discrete 

fracture approach is that it can explicitly account for the effects of individual fractures on 

fluid flow and transport (Berkowitz, 2002). 

 

Figure 2.7:  Conceptual models of a fractured rock system.  Simplified network with 

aperture “b” and flow “q” from left to right and discrete fracture network model of 

field system (From Anderson and Woessner, 1992) 

 

 Another major advantage of the discrete fracture approach (see Figure 2.7) is that 

the geometry of each fracture is explicitly included to account for the effects of individual 

fractures (Berkowitz, 2002).  Fractures are most often represented as channels with 

parallel sides, and the individual fractures are combined into fracture networks.  The 

simplest network has a set of parallel fractures in a one-dimensional problem.  A more 

complex network has two sets of parallel fractures oriented at some angle to each other in 

a two-dimensional array (Smith and Schwartz, 1984).  Another increase in complexity, 
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and one step closer to reality, is to allow the fractures to have varying lengths, locations, 

and orientations relative to one another (Long and Billaux, 1987).  These models can 

have either two- or three-dimensional fracture arrays.  Some of the discrete fracture 

models only account for solute transport by advection, and others include both advection 

and dispersion.  Essentially all of the discrete fracture models are research models (EPA, 

2002).   

 One obvious problem in the practical application of discrete fracture models is 

that it is almost impossible to define the fracture system at a site in fine enough detail to 

apply the model (EPA, 2002).  Additionally, there are computational limitations based on 

the size of the site under study (Berkowitz, 2002).  DFN flow and transport modeling is 

limited to 10
4 

to 10
5 

fractures by computational constraints (Dershowitz et al., 2004).  

Another limitation of the DFN approach is the lack of study into how an increase in stress 

with depth will cause decreases in pore pressure (dewatering) which results in a decrease 

in fracture aperture.  To date, the DFN model has mainly been applied as a research tool 

(Anderson and Woessner, 1992). 

 The best potential for application of this approach seems to be to use statistical 

modeling of the fracture system to duplicate the measured hydrology at a site.  Most of 

the work on complex discrete fracture networks has been done in connection with the 

disposal of nuclear waste in crystalline rocks and has not included diffusion into the rock 

matrix (EPA, 2002). 

 Cacas et al. (1990 a; 1990b) reported an application of a DFN flow and transport 

model to a granite uranium mine in France.  The study inferred fracture density, 
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orientation, and fracture size from rock cores and rock outcroppings.  Fracture hydraulic 

properties were inferred from local injection tests, and transport properties were inferred 

from tracer tests.  The model assumed all fractures could be idealized as smooth parallel 

plates and utilized the cubic law discussed in Section 2.2.2 (Snow, 1965).  Cacas et al. 

(1990 a; 1990b) note that a large number of data were used to construct the DFN.   

 

2.3.6  Hybrid DFN/EPM Model 

 As discussed previously, there are two classes of fracture models:  discrete 

fracture models and continuum models.  It is interesting to note that in most cases, DFN 

models employ continuum approaches to treat flow and transport within each fracture.  

Also, continuum models can be applied to the investigation of discrete fractures within a 

system by representing them as heterogeneous layers in a continuous medium 

(Berkowitz, 2002).  In this vein, there recently have been increasing developments of 

hybrid DFN/EPM models such as ConnectFlow (Serco, 2004) and FracWorks XP 

(Dershowitz et al., 2004).   

 As the name suggests, the DFN/EPM model combines aspects of both DFN and 

EPM models.  Figure 2.8 illustrates both portions of this model, with the colored 

polygons representing the DFN model and the grid representing the EPM model.   The 

DFN model idealizes fractures as planar polygons because they are computationally 

efficient and typically few field data are available to describe non-planar fractures 

(Dershowitz et al., 2004).   The assumption of polygonal fractures allows the 

representation of a wide variety of fracture shapes by a single mathematical form.  

Previous studies of fracture mechanics in homogeneous rock suggest the general shape of 
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a single fracture should be elliptical (Baecher et al., 1977).  The Baecher model (Baecher 

et al., 1977) locates fracture centers in space through a Poisson process and the fractures 

are generated as disks based on aperture and orientation.  Rarely is a fracture perfectly 

elliptical in the field, and Dershowitz (1984) noted observed fractures are generally 

polygonal due to terminations at intersections with other fractures, and little error is 

introduced by representing the elliptical fracture as a polygon of equivalent area.  The 

varying degrees of shading in Figure 2.8 represent varying values of hydraulic 

conductivity in the system with darker shading symbolizing less conductive fractures.  

The varying sizes of polygons represent different size fractures. 

 

Figure 2.8:  EPM implementation of a DFN hydrostructural model (From 

Dershowitz et al., 2004).  The DFN model is represented by the colored polygons. 

 

 Figure 2.8 illustrates the EPM implementation of a DFN model, where an EPM 

grid (shown in the upper right hand portion of the figure) is conceptually merged with the 
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DFN model, so that each grid cell has properties related to the fracture network.   The 

method used to calculate EPM properties from DFN fractures is commonly referred to as 

the Oda (1985) approach.  The advantage of the Oda approach is that it can obtain EPM 

properties for grid cells based directly on the geometry and properties of the fractures 

within those cells.  The Oda approach begins by generating the full, three dimensional 

DFN.  While DFN flow and transport modeling is limited to 10
4 

to 10
5 

fractures by 

computational constraints, the Oda approach can be applied to patterns of 10
7 

or more 

fractures.  The Oda approach overlays an EPM grid on the fractures, and derives EPM 

properties for each grid cell based on the DFN contained in that cell (Dershowitz et al., 

2004). 

 For a specific grid cell with known fracture areas and transmissivities obtained 

from the DFN model, an empirical fracture tensor can be calculated by adding individual 

fractures weighted by their area and transmissivity (Dershowitz et al., 2004).  Oda’s 

permeability tensor is then derived by assuming that fracture flow is a vector along the 

fracture’s unit normal (Dershowitz et al., 2004).  The Oda approximation derives an 

equivalent permeability tensor, according to a specific grid. The permeability tensor can 

then be inserted into the cubic law to calculate hydraulic conductivity values for each 

cell.   The Oda approach reproduces the underlying discrete fracture hydrostructural 

model for both flow and transport. This approach thus represents a balance between the 

accuracy of directly modeling each of the fractures in the hydrostructuctural model 

against the computational efficiency of coarser numerical model discretizations 

(Dershowitz et al., 2004). 
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 The advantage of this approach is that it is able to more accurately model the 

response of the groundwater table and shallow wells using continuum EPM elements, 

while still using the DFN for evaluating connectivity between wells in the fractured rock 

(Dershowitz et al., 2004).  This model has been been applied in carbonate, fractured till, 

crystalline, and clastic systems.  It is noted that the use of this model requires a dense 

fracture system with high connectivity (Dershowitz et al., 2004). 

 

2.4  Model Validation 

 Karl Popper (2002) once said that “scientific theory cannot be validated; only 

invalidated.”  This speaks to achieving absolute truth, which is virtually impossible when 

dealing with subsurface phenomena.  Over the past several years, studies have shown that 

groundwater models are limited in their ability to predict system behavior due to 

substantial uncertainty inherent in the subsurface environment.  Full characterization of 

the subsurface is needed to build a truly valid groundwater model, but obviously, full 

characterization of the subsurface is impossible—for instance, the massive extent of 

borehole drilling required for full characterization, even if economically feasible, would   

affect the integrity of the site just due to the number of holes that would be drilled 

(Hassan, 2004).   

 That being said, it becomes necessary to build confidence in groundwater models 

such that everyone involved, from the regulators to the public, agree the model is 

providing meaningful output to inform policy and remediation decisions.  Popper (2002) 

argues that scientific theories can never be proven, merely tested and corroborated.  In 
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this section, we will discuss the various philosophies and procedures on model validation 

and building confidence in groundwater models. 

 Currently, there are four proposed approaches to declaring a model as “valid.”  

The first approach defines a valid model as one that truly represents reality.  The second 

approach, which is related to the first, is based on the philosophical discussions of Karl 

Popper and states that models, as true representations of reality, can never be validated, 

but only invalidated.  The third approach is a practical approach, defining a model as 

valid if there is confidence that modeling errors will have minimal effect on decisions or 

yield conservative results.  Finally, the fourth approach acknowledges that although full 

scientific validation may be impossible, models can be accepted based on confidence that 

they yield reasonable results (Hassan, 2004). 

 Regardless of the validation approach, the cost of model validation should be 

considered when designing validation plans.  Figure 2.9 shows a limit where additional 

validation costs contribute minimal increases in confidence.  As such, decision makers 

must come to an agreement with regulators and the public as to level of confidence 

necessary (Hassan, 2004). 
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Figure 2.9:  Value and cost of model as functions of desired level of confidence 

(From Hassan, 2004) 

 

 Once a level of confidence is agreed upon, the validation process can begin.  

Ultimately, validation requires a forward looking perspective.  It is necessary to conduct 

the modeling process within an iterative loop of characterization, calibration, modeling, 

prediction, and recharacterization (Hassan, 2004).  Figure 2.10 schematically represents 

this iterative loop (steps 1-6) and proposes an exit strategy.  The inner loop represents the 

need to reduce the uncertainty of the model to negligible levels.  There will never be 

enough information about a specific site to eliminate all model uncertainty.  Therefore, a 

decision should not be based solely on this loop (Hassan, 2004).  Rather than spend time 

recharacterizing the model through steps 1-6, it is better to accept some uncertainty and 

exit this iterative loop.  The validation process now evaluates how the model conforms to 
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regulatory requirements and allows for reintroduction to the iterative loop as needed 

(Hassan, 2004).   

 

Figure 2.10:  Flowchart of model validation plan (From Hassan, 2004) 
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 In general, validating a site-specific model is difficult, but it is possible to build 

confidence in the model by following the simple flowchart presented above.  Through the  

incremental collection of site specific information and reevaluation, the confidence in 

model results will increase and allow all concerned parties to make informed decisions 

about remediation alternatives.  In Chapter 3, a model of an existing contaminated site 

will be built based on actual site hydrogeologic data.  The model will be validated by 

comparing contamination data measured in the field with model-simulated contaminant 

concentration values.    
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3  Methodology 

 

 

3.1  Introduction 
 

 Chapter 2 discussed various modeling methods which can be applied to simulate 

fractured aquifer systems.  As shown in Chapter 2, the equivalent porous media (EPM) 

model has been extensively used to represent fractured flow systems.   As was also noted 

in Chapter 2, perhaps the main challenge in applying an EPM model to simulate a 

fractured system is deciding upon appropriate parameter values to use in the model.  In 

this chapter, we propose use of a hybrid discrete fracture network/equivalent porous 

medium (DFN/EPM) model to simulate contaminant transport in a fractured aquifer 

system.  The DFN module is used to determine appropriate parameter values for input 

into an EPM model of the aquifer.  As will be discussed in detail below, the DFN/EPM 

approach was chosen because it permits simulation of a fracture system without the 

extensive data collection (and costs) needed to characterize a site in order to apply a dual-

porosity or DFN model. 

 Following the research methodology outlined in Chapter 1, after selecting an 

appropriate modeling approach, the next steps are to calibrate the model using 

contaminant data from a fractured aquifer site and then demonstrate how the model may 

be used to manage contamination at the site.  This chapter will discuss the formulation of 

such a model.  We first describe the process used to select a fractured aquifer site for 

study.  After selecting a site, we provide the rationale for using the DFN/EPM approach 

for modeling the site.  We then apply the FracWorks XP implementation of the 

DFN/EPM approach to construct a site model.  Finally, we present our proposed 
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approach for calibrating the model and then use it to simulate the effectiveness of pump-

and-treat remediation of the site. 

 

3.2 Site Selection 

3.2.1  Candidate sites 

 A number of Air Force installations were considered for this study.  The 

installations were Ramstein Air Base (AB), Germany; Spangdahalem AB, Germany; 

Osan AB, Republic of Korea; Pease Air Force Base (AFB), New Hampshire, and Loring 

AFB, Maine.  Because of the data necessary to model fractured aquifer sites, several of 

the installations were eliminated from this study.  Ramstein AB and Spangdahalem AB 

both supplied detailed hydrogeologic data, but no historical contaminant monitoring data 

were available.  Osan AB supplied both hydrogeologic and historical contaminant 

monitoring data, and this site has recently been studied using the  EPM approach 

(Staples, 2002).  However, the data were not well organized, consisting largely of hard 

copies of reports, well logs, concentration measurements, and pump tests.           Pease 

AFB supplied both hydrogeologic data and detailed contaminant monitoring data in 

digital form; therefore, this study will focus on applying the relatively new hybrid 

DFN/EPM model to the fractured aquifer located below Pease AFB in Portsmouth, New 

Hampshire. 

 

3.2.2  Site Description 

 This study will examine one of the Installation Restoration Program sites located 

on Pease AFB (see Figure 3.1).  Site 32 encompasses Building 113 in the center of the 
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base in the area known as the Industrial Shop/Parking Area (see Figure 3.2).  Much of the 

site is paved or covered by buildings. 

 Building 113 was used between 1955 and 1991 primarily for aircraft munitions 

systems and avionics maintenance, including some vapor degreasing operations.  A 1,200 

gallon concrete underground storage tank (UST) was located near the northeastern corner 

of Building 113.  The UST received waste trichloroethylene (TCE) from degreasing 

operations conducted inside Building 113 from 1956 to 1968.  Sometime after 1977, use  

of the UST was discontinued and it was filled with sand.  In 1988, the UST was 

excavated and removed, and an underground discharge pipe associated with the UST was 

discovered.  TCE has been detected in monitoring wells at concentrations ranging from 

six to 11,000 µg/L, which is many times TCE’s maximum contaminant level of 5 µg/L.  

The soil and groundwater contamination at this site is believed to be primarily a result of 

the historic use of the TCE tank and associated overflow pipe (MWH, 2004). 
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Figure 3.1:  Pease AFB site location map (From MWH, 2004) 
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Figure 3.2:  Site 32 location map (From MWH, 2004) 

 

 Monitoring well data at site 32 show the contaminant plume has traveled several 

hundred feet (See Figure 3.3).   Previous studies (MWH, 2004) indicate the overburden in 

the vicinity of the site is approximately 20 to 30 feet thick and consists of fine grained 

marine silt and clay.  Bedrock below the overburden consists of crystalline sedimentary 

and igneous rock with a pervasive fracture network.   
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Figure 3.3:  Cross Section of Site 32 Plume (MWH, 2004) 

 

 

3.3  Model Selection 

  A numerical model is required to simulate the relatively complex fractured system 

at Pease AFB Site 32.  Previous thesis research (Staples, 2002) has shown that an EPM 

model is appropriate for use in simulating contaminated fractured media, so long as the 

scope of the simulation problem is large compared to the scale of the fractures (Lee and 

Lee, 1999).  Other studies have also shown that EPM approaches are appropriate for 

simulating fractured systems (NRC, 1990; EPA, 2001).   

 A true DFN or dual-porosity model would need significantly more site data to 

characterize the fractures.  In addition, DFN models are limited to near-field scales (50-
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100 m) due to the large computational demands of these models (Painter and Cvetkovic, 

2005).  However, FracWorks XP for MODFLOW can generate a detailed fracture 

network using data gathered from borehole logs and pump tests and export the 

information for use in MODFLOW (Dershowitz et al., 2004).  Based on the input from 

FracWorks XP, MODFLOW assigns values of hydraulic conductivity to cells in the 

MODFLOW grid.  With these values, MODFLOW is able to simulate the heterogeneity 

and anisotropy of the fractured system.  This approach using FracWorks XP has been 

successfully applied in carbonate, fractured till, crystalline, and clastic systems 

(Dershowitz et al., 2004).  The geology of fractured, crystalline rock is somewhat similar 

to these systems, and, as such, the hybrid DFN/EPM approach is considered appropriate 

for modeling the fractured system at Pease AFB.  In addition, FracWorks XP is readily 

accessible by the author, with technical support available.  Therefore, FracWorks XP for 

MODFLOW was selected for application to the problem. 

 

3.4  Applying Hybrid DFN/EPM Approach to Construct Model of a Fractured Site 

 In this section, we discuss the method used to construct a MODFLOW-based 

EPM model using input from FracWorks.  Clark (2004) provided step-by-step 

instructions for applying the DFN/EPM approach to build a model, which are 

summarized within this section.  The programs used for this research include: 

• FracWorks XP for MODFLOW (Version 4.10, supplied by Golder Associates) 

• StrataFrac XP for MODFLOW (Version 4.10, supplied by Golder Associates) 

• GMS 5.0 (supplied by DoD) 
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3.4.1  Input File Creation 

 The process begins with the creation of a 3-D fracture network and fracture file 

(.fab) using FracWorks XP.  The site grid is created based on the conceptual model of the 

site (see Section 3.5).  After creation of the grid, a fracture network (see Figure 3.4) must 

be created within the grid.  In section 2.3.6, it was discussed that FracWorks XP idealizes 

fractures as planar polygons because they are computationally efficient and typically few 

field data are available to describe non-planar fractures (Dershowitz et al., 2004).  The 

varying colors displayed in Figure 3.4 relate to hydraulic conductivity values with darker 

shading representing lower conductivity fractures.  The size of the polygons relates to the 

size of the fracture.   

 To create the network, average values for transmissivity, storativity, and fracture 

aperture (see section 3.5) were input into FracWorks XP.  After creation of the fracture 

network, a finite difference grid of the same dimensions and units as those used in the 

fracture file will then be created in GMS.  This will create a grid discretization file (.dis) 

which is necessary for use by StrataFrac XP (Clark, 2004).  The discretization file must 

be converted into the format used by StrataFrac XP.  It is essential to follow the required 

format to ensure StrataFrac XP is using units consistent with those in the GMS grid. 
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Figure 3.4:  Fracture network created with Fracworks XP 

 

3.4.2  StrataFrac XP Execution 

 Both the fracture file (.fab) and the GMS grid discretization file (.dis) are then 

imported into StrataFrac XP.  Figure 3.5 shows the GMS grid being placed into the 

fracture network.  Following the insertion of the GMS grid onto the fracture network, the 

Oda (1985) approach (see Section 2.3.6) was used to calculate EPM properties for grid 

cells based on the fracture properties within those cells.  Essentially, the Oda approach 

integrates all the fractures contained within a grid cell and calculates an average value of 

hydraulic conductivity and porosity for that cell.  The Oda analysis is performed within 

StrataFrac XP.  The StrataFrac XP output can then be exported in GMS format (.dat).  

Two data files are created for use by GMS.  The files contain hydraulic conductivity and 

porosity values for each cell in the grid.  Should a cell contain no fractures, a zero value 

will result.  GMS will not recognize zero values and they must be replaced with very 
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small, positive values for use in GMS (Clark, 2004).  GMS is now ready to use the two 

files created by StrataFrac XP.  We now have an EPM depiction of the fractured site, 

which can be used by GMS and was constructed using DFN data. 

 

Figure 3.5:  Convergence of EPM grid file with DFN fracture network 

 

 

3.4.3  Assumptions 

1)  Steady-State Flow:  This study will focus on long term containment of a chlorinated 

solvent plume.  As is typical (Bakker and Strack, 1996; Charbeneau, 2000), steady state 

flow for the site was assumed since the time-scale of transient fluctuations in flow is 

large compared to the time-scale of the contaminant transport.   

2)  Sorption:  Freeze and Cherry (1979) defined a retardation factor based on specific 

surface area of the fractures.  Since there is very little data characterizing the 

geochemistry of the fractures, a retardation factor cannot be calculated based on the 



   

48 

Freeze and Cherry (1979) model.  In addition, little attention has been placed on the 

analysis of sorption in fractured systems, and, as such, a simple retardation factor is 

generally assumed for sorption when modeling transport in fractured media (Berkowitz, 

2002).  Previous modeling efforts at this site have used a retardation factor of 1.8 to 

simulate adsorption of the TCE to the surrounding matrix, and as such, the same factor is 

assumed for this system (AFBCA, 1995). 

3)  Biodegradation:  Natural attenuation relies on naturally occurring physical, chemical, 

and biological processes to control the migration of contaminants dissolved in 

groundwater (Bedient et al., 1999).  The Office of Solid Waste and Emergency Response 

(OSWER) states that “the hydrogeologic and geochemical conditions favoring significant 

biodegradation of chlorinated solvents sufficient to achieve remediation objectives within 

a reasonable timeframe are anticipated to occur only in limited circumstances” (OSWER 

Directive 9200.4-17P, 1999).  In a fractured aquifer system with extreme heterogeneity 

and difficult monitoring conditions, natural attenuation of chlorinated solvents would be 

an infeasible remediation strategy.  Based on this information, a conservative approach is 

taken, and the effects of biodegradation are assumed negligible.  

 

3.5  Site and Remediation Model 

 In this section, a simple model of TCE contamination at Pease AFB is 

constructed.  Model parameters, detailed assumptions, and model verification are 

explained. 
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3.5.1  Model Parameters and Detailed Assumptions 

 Contamination has primarily migrated into the bedrock (see Figure 3.3).  To 

simulate flow and transport in the saturated zone, a MODFLOW finite difference grid 

was constructed that is 60 cells long by 60 cells wide by 4 cells deep, so that each cell is 

10 meters long, 10 meters wide, and 5 meters deep.  The following parameters and 

assumptions were used in the creation of the model: 

1)  Transmissivity and Storativity:  These values are necessary for creation of the fracture 

network in FracWorks XP for MODFLOW.  In the region of interest (Figure 3.2), the Air 

Force Base Conversion Agency (AFBCA) (1994) performed several pump tests and the 

largest value was used as input values for both transmissivity and storativity (see Table 

3.1).  The largest value was used because FracWorks XP only wants a single value.  

Based on the pump test data, the input values for both transmissivity and storativity were 

determine to be 53.05 m
2
/d and 1.20 x 10

-3
 respectively.   

 

Observation Well ID 32-6007 32-6014 32-6029 32-6033 32-6042 

Transmissivity (m
2
/d) 49.24 16.82 53.05 21.18 22.95 

Storativity 5.14 x 10
-4
 7.84 x 10

-5
 1.20 x 10

-3
 1.8 x 10

-4
 1.97 x 10

-4
 

Table 3.1:  Pump test results for Pease AFB (From AFBCA, 1994) 

 

2)  Fracture Density:  This value is necessary for creation of the fracture network in 

FracWorks XP.  Fracture densities observed in outcrops and cores from Site 32 over five  

to 15-foot intervals range from 0.07 to 4.0 fractures per foot (AFBCA, 1994).  For a more 

conservative approach, the larger value of 4.0 was used in the creation of the fracture 

network. 
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3)  Constant Head Boundaries:  Since the model assumes steady state flow conditions, 

constant head boundaries are defined to induce flow through the site.  Figure 3.6 shows 

the potentiometric surface of the site and was used to determine the west and east 

boundary conditions for the model.  The constant head boundary for the western edge of 

the model is 51 ft (15.55 m) mean sea level (msl) and the boundary for the eastern edge is 

47 ft (14.33 m) msl. 

 

 

Figure 3.6:  Site 32 potentiometric surface in ft MSL (From MWH, 2004) 

 

 

4)  Anisotropy:  The differing values of vertical and horizontal hydraulic conductivity 

refer to the anisotropy of the system.  Generally, anisotropy of up to two orders of 

magnitude is found in fractured media (Domenico and Schwartz, 1998).  FracWorks XP 

for MODFLOW calculates both vertical and horizontal hydraulic conductivity for each 
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model cell using the Oda approach.  The ratio of these values is input into GMS as the 

anisotropy values for the system.  As a result, there is no need to assume a single 

anisotropy value for the system. 

5)  Plume Generation:  Only TCE was considered in the study.  The plume was generated 

under the assumption that the contaminant source covered the full depth (20 m) of the 

bedrock.  The source area is shown in Figure 3.7.  Table 3.2 shows maximum TCE values 

detected in the source area wells.  Each well was considered a source and these 

concentrations were assumed constant in time.  Each of the values in Table 3.2 was 

placed in the GMS grid based on actual location of the corresponding well within the 

grid.  The model was run allowing the natural gradient of the system to distribute the 

contaminant plume.  

 

Observation Well ID 32-5024 32-6014 32-6073 32-6074 

Max TCE (mg/L) 930 110 34 940 

Table 3.2:  Maximum TCE values in source area (From MWH, 2004) 
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Figure 3.7:  Site 32 source area (From AFBCA, 1995) 

 

 

3.5.2  Model Validation 

 After creation of the model using the above input parameters, the model was 

evaluated.  In section 2.4, a method was proposed to assist in the model validation 

process.  This provided a basis for the validation process.  Initially, monitoring well 

locations within the model were placed according to actual locations shown in Figure 3.3.  

Historical head and contaminant data were available for these wells, and allowed for 

comparison of actual observed values with the model calculated values.   

 After construction, model-derived values of hydraulic conductivity were 

examined to see how they compared to conductivities calculated for the site using 
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traditional pump test interpretation techniques.  First, StrataFrac XP calculated hydraulic 

conductivity values for each cell in the GMS grid.  These values were compared with 

pump test results.  Several pumping tests were conducted at Site 32 and were used to 

determine the average horizontal hydraulic conductivity value to be 4.5 m/d (AFBCA, 

1995).  Values calculated using StratFrac XP ranged from 0 to 17 m/d (see Appendix C) 

with the vast majority of values in the range of 4 to 8 m/d.  The average vertical hydraulic 

conductivity value was determined to be 2.5 m/d (AFBCA, 1995).  Values calculated 

using StrataFrac XP ranged from 0 to 11 m/d with the vast majority of values residing in 

the range of 2 to 3 m/d.  Based upon observed site data and model data, the FracMan XP 

software appears to accurately calculate hydraulic conductivity values for the system.   

 The next step involved comparison of measured and modeled heads.  Head values 

were taken from observed water level readings at several monitoring wells.  Monitoring 

wells representing the actual wells (shown in Table 3.3 and Figure 3.2) were placed in the 

model grid to allow for comparison of head values.  Table 3.3 provides a summary of the 

model’s ability to match simulated heads with actual heads.  This table lists the eight 

wells used to evaluate how well the flow model simulated actual conditions.  The table 

also presents the residual, or difference, between simulated and observed values.  The 

relative root mean squared error (RMSEr) between measured and modeled water levels is 

0.013. The RMSEr normalizes the mean square error by dividing through by the mean 

observed value.  The small RMSEr indicates the modeled values adequately match the 

observed values.  
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Model   
Observed 
Water 
Level Head Residual Residual

2
 

Well ID (m MSL) 
(m 

MSL) (m MSL) (m
2
 MSL) 

32-5020 14.94 14.85 -0.09 0.0081 

32-5022 14.48 14.44 -0.04 0.0016 

32-5024 15.06 15.01 -0.05 0.0025 

32-5076 15.14 15.1 -0.04 0.0016 

32-6008 14.67 14.61 -0.06 0.0036 

32-6029 14.88 15.25 0.37 0.1369 

32-6033 14.58 14.2 -0.38 0.1444 

32-6074 15.08 15.02 -0.06 0.0036 

  0.3023 

Root Mean Squared Error 0.19439 

  Relative RMSE 0.013087 

Table 3.3:  Simulated versus actual head values 

 

 The next step involved comparing simulated contaminant concentrations with 

observed values at the same eight wells.  With only the natural gradient forcing flow 

through the system (i.e., no pumping), the actual contaminant concentrations (see 

Appendix A) were to be compared with simulated contaminant concentrations.   It was 

discovered during this phase of model validation that the model required extensive 

computational effort to simulate transport.  GMS required over three hours to simulate 

one year of transport, with the simulation time increasing exponentially for times greater 

than one year.  For example, the model was run for three full days to simulate 585 days of 

transport.  Data are available at the actual site from 1992 until 2003 (see Appendix A), 

but the computational effort required by GMS would not allow for a simulation spanning 

those 11 years. 

 A possible reason for this lies in the fact that FracMan outputs a porosity value for 

each cell in the GMS model grid.  A simulation was run after specifying a single porosity 

value for all cells, and the one year simulation was completed in a little over one hour 
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(three times faster than when each cell has its own porosity specified).  It appears this 

may be a limiting factor of implementing the DFN/EPM approach in GMS.   

 Monitoring data for Pease AFB are available from 1992 to 2003 (see Appendix 

A), but the initial time that the contamination source was released (t = 0) is unknown.  

Therefore, the contaminant plume was developed using the concentration data shown in 

Section 3.5.1 as the initial condition in 1992 (t = 0).  The model was set to run from t = 0 

until December 1996.  This signifies the last measurement before Pease AFB 

implemented a pump-and-treat system at the site.  As discussed above, the model took 

three full days to run 585 days of transport.  Figure 3.8 compares the actual plume in 

December 1996 and the model plume simulated assuming the hydrogeological conditions 

described in section 3.5.1.  The actual plume was generated by kriging the December 

1996 concentrations tabulated in Appendix A.  Inspection of the actual plume (Figure 

3.8a) shows the contamination appears to be moving in a northeastern direction.  The 

model plume (Figure 3.8b), although only showing 585 days of data, also shows the 

plume moving in a northeastern direction.  Although the GMS model was unable to 

simulate the full four years (1992 to 1996) of data, it appears that it does adequately 

model the direction of transport and replicates the approximate size and shape of the 

plume. 
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Figure 3.8:  Comparison of (A) actual (December 1996) versus (B) simulated plume 

  

3.6  Model Analysis 

 After gaining confidence that the model was running properly, an analysis of the 

model was conducted to answer the research question of whether the hybrid DFN/EPM 

approach can be used to manage contaminated fractured media sites.  It was concluded 

that complete groundwater restoration to applicable or relevant and appropriate 

requirements (ARARs) at Site 32, in a reasonable time frame, was not feasible under any 

remedial scenario (MWH, 2004).  As such, the recommendation was to isolate the source 

area to prevent continued migration of contaminated groundwater.  An actual pump-and- 

treat system was installed at Site 32 in 1997, and this system will be used to compare 

with the model predictions of pump-and-treat performance.  A plume was built in GMS 

(see Figure 3.8a) by kriging the December 1996 monitoring data (see Appendix A) to 

examine placement and pumping options of a pump-and-treat system.  These 

concentration values served as the initial time (t = 0) for all simulations.  Wells were 
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placed at various locations (see Figure 3.9) within the source area and around the toe of 

the plume based on their actual location at the site. 

 Various pumping scenarios were simulated to find the optimal configuration of 

wells to effectively contain the contaminant plume.  All pumping scenarios were 

simulated under steady state flow conditions.  The layer of clay and silt overlaying the 

bedrock unit is the limiting factor on pump rates.  WESTON (1993) evaluated the site 

and determined the maximum allowable pump rate for Site 32 is 15 gpm (0.06 m
3
/min).  

Pump rates above this will result in excessive consolidation of the overburden and cause 

the ground surface to subside and settlement of buildings in site 32 (AFBCA, 1994).   

 Table 3.4 summarizes the four scenarios simulated with the model.  The first 

scenario simulated the effects of the hydraulic gradient only.  No pumps were operational 

in this scenario.  The second scenario simulated the actual operating pump-and-treat 

system with four source wells pumping at the maximum allowable pump rate.  The third 

pumping scenario was simulated with only two wells pumping at the toe of the existing 

plume.  The fourth scenario was simulated with both the four source wells and the two 

toe wells in operation.  Figure 3.9 shows the locations of the pumping wells, as well as  

 

Pumping Scenario  Parameter 

1 2 3 4 

Number of Pumping Wells 0 4 2 6 

Total Pumping Rate (gpm) 15 15 15 15 

Total Pumping Rate (m
3
/d) 82 82 82 82 

Table 3.4:  Model parameters 
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the locations of downgradient monitoring wells.  Well numbers 32-5024, 5268, 6074, and 

6134 are the source wells.  Well numbers 32-5020 and 7854 are the toe wells.  Well 

numbers 32-5022, 6008, and 6033 are the downgradient monitoring wells. 

 

 

Figure 3.9:  Pumping (PW) and monitoring (MW) well locations 

 

 

 To measure the effectiveness of the pump-and-treat system, simulated 

concentration data will be compared with actual monitoring data while the system is 

operating and not operating.  Within the GMS model, observation points (monitoring 

wells) were placed at the same location as the pumping wells.  The comparisons will help 

answer the research question of how the model can be used to manage contaminated 

fractured media sites.  Results are summarized in Chapter 4. 
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4 Results and Analysis 

 

4.1 Overview 

 

 In this chapter, the data gathered from the model described in Chapter 3 is 

analyzed to answer the research questions:  what is the confidence of the ability of the 

model to “adequately” simulate transport in fractured media and how might the model be 

used to manage contaminated fractured sites.  In Chapter 3 we discussed that a limiting 

factor of this model lies in the computational effort needed to simulate transport.  Due to 

this limitation, we only were able to conduct one-year simulations at the site.  The 

existing pump-and-treat system was put in service in 1997, and the model performance 

was evaluated using the data from 1997 to 1998 (see Appendix A).   

 

4.2 Model Results and Analysis 

 This section will discuss model performance based on the results of the pumping 

scenarios.  Table 4.1 summarizes the parameters used for each pumping scenario.  As a 

reminder, scenario one is simulating the action of the plume with no wells in operation.  

Scenario two is simulating four wells in the source zone.  Scenario three is simulating 

two wells 38 meters (125 feet) downgradient from the source at the toe of the plume.  

Scenario four is simulating all six wells in operation.  Figure 4.1 shows all well locations 

for the scenarios. 
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Pumping Scenario  Parameter 

1 2 3 4 

Number of Pumping Wells 0 4 2 6 

Total Pumping Rate (gpm) 15 15 15 15 

Total Pumping Rate (m
3
/d) 82 82 82 82 

Table 4.1:  Model parameters 

 

 

Figure 4.1:  Pumping (PW) and monitoring (MW) well locations 

 

 

 Heads at the site were simulated for each pumping scenario.  The minimum 

allowable water elevation, based on previous geotechnical evaluations (AFBCA, 1994), 

was determined to be 12.8 meters (42 feet).  The head simulations indicated that 

drawdown was within allowable limits for all pumping scenarios.  
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4.2.1 Pumping Scenario One 

 Scenario one simulates the effect of only the hydraulic gradient (i.e., no pumping) 

on the movement of the contaminant.  The simulation was run for one year and its output 

offers a baseline for future scenarios.  Figure 4.2 shows the contaminant plumes before 

(A) and after (B) one year’s time.  Figure 4.2a is based on the last actual concentration 

measurements taken before 1 January 1997.  The figure shows the plume migrating 

slowly to the northeast (with north being toward the top of the page), as expected.  From 

Section 3.5.1, recall the hydraulic conductivity at the site averages 4.5 m/d.  Thus, unless 

the hydraulic gradient is quite large, it would be anticipated that the plume would not 

migrate far from the source within one year.  Figure 4.3 shows a graphical representation 

of simulated concentration data at the pumping wells.  Figure 4.4 depicts the simulated 

concentration data at the downgradient monitoring wells. 

 

 

Figure 4.2:  Simulated plume at (A) t = 0 and (B) t = 1 year for scenario one 
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Figure 4.3:  Simulated TCE concentrations at pumping wells for scenario one 

 

 

 

Figure 4.4:  Simulated TCE concentrations at downgradient monitoring wells for 

scenario one 

 

 Figure 4.3 shows that without any pumping, the TCE concentrations will remain 

well above the MCL of 5 µg/L at all wells (see Table 4.2).  Downgradient wells shown in 

Figure 4.4 depict TCE levels above the MCL, but at much lower concentrations, 

suggesting the TCE is migrating very slowly from the source area.   
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4.2.2 Pumping Scenario Two 

 Scenario two simulates the actual pump-and-treat system installed at Site 32 in 

1997.  The simulation was run for one year and comparisons were made with actual 

monitoring data at the site.  In this simulation, only the four source pumping wells (5024, 

5268, 6074, and 6134) were operating.  Figure 4.5 compares the simulated contaminant 

plume after one year of natural gradient transport (A) with the plume that is simulated 

with the pumping wells in scenario two (B).  The figure shows the model simulating the 

expected behavior, with the source area contained, but negligible effects on the toe of the 

plume within the one year simulation period.   

 

 

Figure 4.5:  Comparison of simulated plumes after one year of (A) natural gradient 

transport and (B) implementation of pumping scenario two 

 

 Figure 4.6 shows the simulated and actual monitoring data at the four pumping 

wells for calendar year 1997.  Comparison of the simulated and actual values show the 

model does a reasonable job of simulating the actual pump-and-treat system. 
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Figure 4.6:  Simulated and measured TCE concentrations for pumping scenario two 

at four source wells 

 

 Figure 4.7 shows simulated and measured TCE concentrations for the two 

monitoring wells at the toe of the plume.  We see that the simulated concentrations 

overestimate the measured values, which is not unexpected given the aquifer’s 

heterogeneity and the fact that the model has not been calibrated to the data. 

 

 

Figure 4.7:  Simulated and measured TCE concentrations for pumping scenario two 

at two toe wells 
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Figure 4.8:  Simulated and measured TCE concentrations for pumping scenario two 

at three downgradient wells 

 

 Figure 4.8 shows simulated and measured TCE concentrations for the three far 

downgradient monitoring wells.   TCE concentrations at the downgradient wells 

(measured and simulated) are above the MCL, but at much lower concentrations than at 

the wells closer to the source.  This suggests the TCE is migrating very slowly. 

 

4.2.3 Pumping Scenario Three 

 Scenario three involved using two pumping wells (5020 and 7854) placed at the 

toe of the plume.  Figure 4.9 compares the simulated contaminant plume after one year of 

natural gradient transport (A) with the plume that is simulated with the pumping wells in 

scenario three (B).  As expected, the plume migrates toward the two wells, but there is 

limited effect on the source zone.  It appears that the pumps would effectively contain the 

plume from further migration downgradient, but would have negligible effect on the 

source.   
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Figure 4.9:  Comparison of simulated plumes after one year of (A) natural gradient 

transport and (B) implementation of pumping scenario three 

 

 

 

Figure 4.10:  Simulated TCE concentrations at pumping wells for scenario three 

 

 

 Figure 4.10 shows modeled TCE concentrations at each of the pumping wells.  As 

expected, concentrations rise in the two pumping wells that are operational in scenario 

three (5020 and 7854) as plume capture is achieved.  Comparing Figures 4.3 (no 

pumping) and 4.10 (scenario three), we see that the impact of scenario three on 
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concentrations at the pumping wells is minimal.  Figure 4.11 shows simulated TCE 

concentrations at the downgradient monitoring wells for scenario three.  Comparison with 

Figure 4.4 shows that at least in the one-year time frame of the simulation, pumping wells 

at the plume toe do not greatly affect concentrations at the downgradient monitoring 

wells.  Concentrations at the downgradient wells remain above the MCL for TCE.  

 

 

Figure 4.11:  Simulated TCE concentrations at downgradient monitoring wells for 

scenario three 

 

4.2.4 Pumping Scenario Four 

 Scenario four involved all six pumping wells operating.  Figure 4.12 compares the 

simulated contaminant plume after one year of natural gradient transport (A) with the 

plume that is simulated with the six pumping wells in scenario four operating (B).  As 

expected, the four source wells (5024, 5268, 6074, and 6134) were effective at containing 

the source area.  In addition, the toe of the plume appears to migrate toward the wells 

placed at the toe (5020 and 7854).   

 Figure 4.13 displays the simulated TCE concentrations for scenario four at the six 

pumping wells.  As expected, with all six pumps operational, the source area 
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contamination is being contained and TCE concentrations near the source zone are 

reduced.   

 

Figure 4.12:  Comparison of simulated plumes after one year of (A) natural gradient 

transport and (B) implementation of pumping scenario four 

 

 

 

Figure 4.13:  Simulated TCE concentrations at pumping wells for scenario four 
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Figure 4.14:  Simulated TCE concentrations at downgradient monitoring wells for 

scenario four 

 

 

 Figure 4.14 displays the simulated TCE concentrations at the three downgradient 

monitoring wells.  Not unexpectedly, even with all six pumping wells in operation, the 

levels of TCE downgradient are unaffected within the one year simulation period. 

 

4.3 Results Summary and Discussion 

 Table 4.2 compares the simulated TCE contaminant concentrations at each well 

for each scenario after the one year simulation.  It also compares the concentrations 

simulated in scenario 2, which models the actual pump-and-treat site remediation, with 

measured concentrations after one year of pump-and-treat system operation.  In all 

scenarios, the contaminant concentrations observed both at the source and downgradient 

wells failed to meet the MCL for TCE (5 µg/L).  Although standards were not met, it can 

be noted that the modeled pumping system (scenario two) simulated the salient 

characteristics of the data obtained during operation of the actual pump-and-treat system 

(section 4.2.2).  
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Source Wells Toe Wells Downgradient Wells 

Scenario 5024 5268 6074 6134 5020 5024 5022 6008 6033 

1 379.22 322.37 75.65 478.51 27.45 62.48 0.128 0.017 2.118 

Actual 110.00 58.00 51.00 28.00 0.017 0.004 0.004 0.006 0.008 

2 339.47 127.79 0.278 74.44 44.89 10.82 0.127 0.398 3.947 

3 230.80 256.87 29.61 405.00 302.35 49.47 0.132 0.068 2.737 

4 257.59 118.43 0.041 74.23 55.79 3.65 0.127 0.008 4.695 

Table 4.2:  Simulated and measured TCE concentrations at all wells after one year 

for all model scenarios 

 

 Comparison of scenario one with the other scenarios allows us to evaluate the 

impact of pumping on contaminant transport.  With the four source pumps operating 

(scenario two), we see a dramatic decrease in source zone concentration over the one year 

operation.  With only the two toe wells operating (scenario three), we see less reduction 

in the source zone concentration, along with a concentration increase in the toe wells.  

This is to be expected, as the pumping toe wells are capturing contaminated water from 

upgradient.  Looking at all six wells in operations (scenario four), we see that there is 

little difference from the scenario with only the four source wells pumping. 

 From examination of Table 4.2, it appears that scenario two would be the most 

effective at this site.  Operation of only the toe pumps may contain the plume from 

further migration, but it fails to address the source zone.  Additionally, operation of all six 

pumps has little added benefit from operating only the four source pumps.   

 Comparing the scenario two simulation with the measured concentrations, we see 

that the simulated concentrations are generally greater than the measured values.  The 

fact that the simulations and measured values are different is not surprising, given the 

heterogeneity of the real system and the fact that the model has not been calibrated to the 
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data.  The fact that the model generally overestimates the measured values may in part be 

due to the model assumption that biodegradation is negligible, when in reality, 

biodegradation may be an important process affecting the fate of the TCE plume.   

 The fact that the model simulated downgradient concentrations above MCL for all 

pumping scenarios can possibly be attributed to the short run time of the model or that the 

contaminant bypassed the capture zone of the pumping wells.  It is noted that no 

optimization of the system was considered in this study.    
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5  Conclusions 

 

 

5.1  Summary 

 

 The goal of this research is to ascertain if currently available models can be used 

as tools in managing groundwater contamination in fractured aquifers.  A DFN/EPM 

model of an actual site was constructed based upon site geotechnical data (MWH, 2004) 

and previous modeling efforts (AFBCA, 1994) in an attempt to evaluate the practicability 

of using a hybrid DFN/EPM model to help decision makers manage groundwater 

contamination in fractured aquifer systems.   

 The evaluation was conducted using conditions found at a contaminated fractured 

aquifer at Pease Air Force Base, New Hampshire.  A DFN/EPM model of the site was 

constructed and simulations run for various remediation scenarios, including a “no-

action” scenario and a scenario that replicated the actual pump-and-treat system that was 

selected for the site.  The simulations showed that the model reasonably simulated 

hydraulic and contaminant responses to remediation activities at the site, and that pump- 

and-treat systems have the potential to contain the plume, although contaminant levels 

were predicted to remain above MCLs, at least within a year of implementation of the 

remedial remedy.   

 

5.2  Conclusions 

 Existing models are helpful in developing an understanding of the behavior 

of groundwater flow and contaminant transport in fractured aquifers.  A review of 

the literature indicates that there are a wide range of models which incorporate many of 

the salient processes that impact flow and contaminant transport in fractured media.  The 
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more complex models, which explicitly account for the effects of individual fractures on 

fluid flow and contaminant transport, require data that are typically unavailable at a 

remediation site.        

 The hybrid DFN/EPM model is appropriate for application in a fractured 

system.  The literature suggests that an EPM model is appropriate when dealing with 

fractured rock in the absence of detailed site data as long as the scale of the system being 

modeled is sufficiently larger than the scale of fracturing.  The literature also shows that 

it is appropriate to convert DFN data to equivalent data that can be used in an EPM 

model.  In this study, we demonstrated that a hybrid DFN/EPM model could adequately 

simulate flow conditions at a fractured site.  It was also seen that at least qualitatively, the 

model could be used to replicate the salient characteristics of field data obtained during a 

pump-and-treat remediation of a contaminated fractured aquifer. 

 Numerical modeling using the DFN/EPM can help decision makers manage 

contaminated fractured aquifers.  Numerical modeling provides decision makers with 

a tool they can use to gain an understanding of flow and transport in a complex, 

heterogeneous, fractured system.  The DFN/EPM uses multiple cells to represent varying 

hydraulic conductivities in order to simulate the impact of the heterogeneous conditions 

commonly associated with fractured aquifers on contaminant transport.  With the 

DFN/EPM, the potential effects of alternative remedial actions on contaminant 

movement and fate can be simulated, in order to design and optimize remediation 

technologies.  The numerical model built based on hydrogeologic data from Pease AFB 

provided a general understanding of how a pump-and-treat system could be applied in a 

fractured rock aquifer at Pease AFB.  Model analysis indicates pump-and-treat 
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technology may be appropriate for containing contaminant plumes under the 

hydrogeologic conditions encountered at Pease AFB, though cost and cleanup times may 

exceed acceptable limits.  As shown in this study, contaminant levels were reduced with 

the installation of the pump-and-treat system; however, it was also noted that none of the 

scenarios simulated resulted in contaminant levels achieving MCLs. 

 

5.3  Recommendations 

 Explore the use of newer and faster computers with the hybrid DFN/EPM 

model to simulate the transport of contaminants in fractured aquifers.  As noted in 

Chapters 3 and 4, the computational effort necessary to run this model was much more 

than that needed to run an EPM.  As such, it would be beneficial to perform the 

simulations with these faster or parallel systems, to determine if increased computing 

power speeds up the simulation. 

 Explore the use of MODFLOW interfaces other than GMS to simulate the 

DFN properties within the EPM model.  Other MODFLOW interfaces, such as 

Groundwater Vistas, may allow for less computational effort for various reasons.  It 

would be beneficial to test the model with these other interfaces to determine the least 

computationally intensive method for running the hybrid model. 

 Explore the use of groundwater transport models other than the hybrid 

DFN/EPM to simulate the fate and transport of contaminants in fractured aquifers.  

Further geotechnical investigations to refine values for parameters like fracture density, 

spacing, and connectivity would enable alternate models discussed in Chapter 2 to be 

explored.  Results from these analyses could be used to validate the assumption that the 
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hybrid DFN/EPM is appropriate for fractured aquifers, or that another model more 

accurately predicts contaminant transport. 

 Explore optimization of pump-and-treat systems for application in fractured 

rock systems.  This study was a preliminary look at how a pump-and-treat system might 

be applied in a fractured aquifer.  No attempt was made to design an “optimal” system 

that would achieve specific performance goals at minimal cost.  As such, it is 

recommended that the pumping layout proposed be reevaluated, to determine if the rates 

and locations should be adjusted to enhance removal while still providing hydraulic 

containment.  For the purpose of simplicity in this research, which was focused on 

evaluating the usability of the hybrid DFN/EPM, the system was limited to the actual 

wells that had been installed at the site, and pumping rates were assumed constant at each 

well.  To effectively contain a contaminant plume in fractured media utilizing a pump-

and-treat system, alternative well locations, screen depths, and pumping rates should be 

considered to ensure plume capture.   
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Appendix A:  Historical monitoring data from Pease AFB 

 

Well ID Date 

TCE  

(µµµµg/L) 
   

32-4254 12/21/1994 110 

32-4254 11/3/1995 360 

32-4254 8/5/1996 260 

32-4254 11/5/1996 200 

32-4254 5/2/1997 100 

32-4254 7/17/1997 73 

32-4254 11/8/1997 65 

32-4254 4/13/1998 35 

32-4254 8/3/1998 31 

32-4254 10/20/1998 530 

32-4254 5/26/1999 35 

32-4254 9/27/1999 826 

32-4254 3/22/2000 142 

32-4254 10/3/2000 99 

32-4254 5/2/2001 23 

32-4254 10/10/2001 17 

32-4254 5/31/2002 12 

32-4254 5/19/2003 5.6 

32-4254 10/14/2003 4.4 

   

32-5019 9/26/1991 36 

32-5019 1/14/1992 24 

   

32-5020 9/24/1991 0.2 

32-5020 1/13/1992 1 

32-5020 11/12/1996 3 

32-5020 4/15/1997 1 

32-5020 7/16/1997 1 

32-5020 11/6/1997 17 

32-5020 4/10/1998 1 

32-5020 8/5/1998 0.9 

32-5020 10/14/1998 1 

32-5020 6/16/1999 2 

32-5020 7/5/2000 0.8 

32-5020 8/23/2001 1 

32-5020 7/28/2003 1 

   

32-5022 9/24/1991 0.7 

32-5022 1/13/1992 0.4 

32-5022 7/27/1995 0.34 

32-5022 11/22/1996 120 

32-5022 4/15/1997 8 

32-5022 7/25/1997 8 

32-5022 11/5/1997 4 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-5022 4/1/1998 2 

32-5022 8/6/1998 1 

32-5022 10/13/1998 1 

32-5022 6/17/1999 2 

32-5022 7/6/2000 1 

32-5022 8/23/2001 1 

32-5022 7/28/2003 1 

   

32-5024 9/26/1991 190000 

32-5024 1/10/1992 550000 

32-5024 1/10/1992 680000 

32-5024 11/11/1993 640000 

32-5024 12/14/1993 930000 

32-5024 3/2/1994 850000 

32-5024 3/14/1994 750000 

32-5024 5/17/1994 910000 

32-5024 11/10/1994 820000 

32-5024 5/17/1995 62000 

32-5024 10/23/1995 46000 

32-5024 10/27/1995 440000 

32-5024 4/8/1996 31000 

32-5024 7/31/1996 34000 

32-5024 11/20/1996 15000 

32-5024 2/20/1997 38000 

32-5024 2/25/1997 220000 

32-5024 2/28/1997 300000 

32-5024 3/4/1997 240000 

32-5024 3/11/1997 18000 

32-5024 3/18/1997 150000 

32-5024 4/9/1997 160000 

32-5024 5/5/1997 200000 

32-5024 6/11/1997 150000 

32-5024 7/15/1997 290000 

32-5024 8/5/1997 220000 

32-5024 9/10/1997 170000 

32-5024 10/14/1997 140000 

32-5024 11/7/1997 150000 

32-5024 11/11/1997 93000 

32-5024 12/16/1997 110000 

32-5024 1/19/1998 70000 

32-5024 2/13/1998 66000 

32-5024 3/12/1998 61000 

32-5024 4/8/1998 99000 

32-5024 4/15/1998 87000 

32-5024 5/7/1998 69000 

32-5024 6/9/1998 55000 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-5024 7/8/1998 64000 

32-5024 8/4/1998 86000 

32-5024 8/5/1998 66000 

32-5024 9/1/1998 70000 

32-5024 10/9/1998 62000 

32-5024 10/15/1998 59000 

32-5024 11/13/1998 140000 

32-5024 12/8/1998 78000 

32-5024 1/5/1999 140000 

32-5024 2/16/1999 120000 

32-5024 6/29/1999 134000 

32-5024 7/19/1999 110000 

32-5024 7/5/2000 78000 

32-5024 8/24/2001 27000 

32-5024 7/29/2003 11000 

   

32-5025 10/1/1991 35000 

32-5025 1/9/1992 460000 

32-5025 11/11/1993 17000 

32-5025 12/13/1993 13000 

32-5025 3/2/1994 14000 

32-5025 3/14/1994 14000 

32-5025 5/17/1994 24000 

32-5025 11/10/1994 69000 

32-5025 5/17/1995 30000 

32-5025 4/8/1996 94000 

32-5025 8/1/1996 39000 

32-5025 11/11/1996 27000 

   

32-5031 1/15/1992 0.8 

32-5031 11/13/1996 8 

32-5031 4/15/1997 1 

32-5031 7/30/1997 2 

32-5031 11/10/1997 8 

32-5031 4/2/1998 1 

32-5031 8/6/1998 4 

32-5031 10/19/1998 1 

32-5031 6/21/1999 5 

32-5031 7/5/2000 6 

32-5031 8/23/2001 2.4 

32-5031 7/28/2003 4.7 

   

32-5032 1/10/1992 1 

32-5032 7/20/1993 1 

32-5032 11/9/1993 1 

32-5032 5/17/1994 1 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-5032 11/10/1994 1 

32-5032 5/16/1995 1 

32-5032 11/1/1995 22 

32-5032 4/8/1996 1 

32-5032 7/31/1996 0.5 

32-5032 11/19/1996 5 

32-5032 4/28/1997 1 

32-5032 7/23/1997 1 

32-5032 11/6/1997 2 

32-5032 3/31/1998 1 

32-5032 7/28/1998 1 

32-5032 10/20/1998 1 

32-5032 6/24/1999 2 

32-5032 7/10/2000 1 

32-5032 8/23/2001 1 

32-5032 7/29/2003 1 

   

32-5075 10/1/1992 1 

32-5075 8/5/1996 0.5 

32-5075 11/13/1996 1 

32-5075 4/16/1997 1 

32-5075 7/15/1997 1 

32-5075 11/6/1997 1 

32-5075 4/15/1998 1 

32-5075 8/6/1998 0.6 

32-5075 10/19/1998 1 

   

32-5076 10/1/1992 2 

32-5076 6/23/1994 1 

32-5076 11/10/1994 1 

32-5076 5/22/1995 0.16 

32-5076 11/1/1995 1 

32-5076 4/8/1996 110 

32-5076 7/30/1996 1 

32-5076 11/14/1996 4 

32-5076 4/16/1997 2 

32-5076 7/15/1997 1 

32-5076 11/10/1997 0.7 

32-5076 4/22/1998 1 

32-5076 8/10/1998 1 

32-5076 10/19/1998 1 

32-5076 6/22/1999 2 

32-5076 7/10/2000 1 

32-5076 8/23/2001 1 

32-5076 7/30/2003 1 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-5077 9/24/1992 7 

32-5087 9/25/1992 1 

32-5087 4/14/1997 1 

32-5087 7/14/1997 1 

32-5087 11/5/1997 1 

32-5087 3/25/1998 1 

32-5087 8/3/1998 1 

32-5087 10/19/1998 1 

   

32-5088 9/25/1992 1 

32-5088 4/7/1997 1 

32-5088 7/10/1997 1 

32-5088 11/5/1997 1 

32-5088 3/26/1998 1 

32-5088 8/4/1998 1 

32-5088 10/14/1998 1 

   

32-5142 4/13/1995 520000 

32-5142 5/2/1995 430000 

32-5142 5/2/1995 300000 

32-5142 5/2/1995 140000 

32-5142 5/2/1995 460000 

32-5142 5/2/1995 370000 

32-5142 5/2/1995 180000 

32-5142 5/2/1995 370000 

32-5142 5/2/1995 490000 

32-5142 5/2/1995 440000 

   

32-522 11/30/1988 0.6 

32-522 5/6/1989 0.6 

32-522 8/4/1990 0.6 

32-522 9/24/1991 1 

   

32-5266 10/6/1995 2.9 

32-5266 11/2/1995 4.4 

32-5266 4/9/1996 11 

32-5266 7/30/1996 5 

32-5266 11/14/1996 5 

32-5266 4/22/1997 56 

32-5266 7/24/1997 86 

32-5266 11/5/1997 4 

32-5266 4/21/1998 38 

32-5266 8/6/1998 60 

32-5266 10/19/1998 5 

32-5266 6/22/1999 45 

32-5266 7/10/2000 140 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-5266 8/23/2001 210 

32-5266 7/30/2003 76 

   

32-5267 10/23/1995 50000 

32-5267 10/27/1995 35000 

32-5267 11/21/1996 44000 

32-5267 2/20/1997 26000 

32-5267 2/25/1997 24000 

32-5267 2/28/1997 40000 

32-5267 3/4/1997 36000 

32-5267 3/11/1997 29000 

32-5267 3/18/1997 36000 

32-5267 4/9/1997 37000 

32-5267 5/5/1997 44000 

32-5267 6/11/1997 34000 

32-5267 7/15/1997 37000 

32-5267 8/5/1997 54000 

32-5267 9/10/1997 36000 

32-5267 10/14/1997 18000 

32-5267 11/6/1997 31000 

32-5267 11/11/1997 22000 

32-5267 12/16/1997 23000 

32-5267 1/19/1998 20000 

32-5267 2/13/1998 26000 

32-5267 3/12/1998 27000 

32-5267 4/8/1998 28000 

32-5267 4/15/1998 49000 

32-5267 5/7/1998 39000 

32-5267 6/9/1998 24000 

32-5267 7/8/1998 30000 

32-5267 8/4/1998 23000 

32-5267 8/5/1998 16000 

32-5267 9/1/1998 13000 

32-5267 10/9/1998 11000 

32-5267 10/15/1998 19000 

32-5267 11/13/1998 23000 

32-5267 12/8/1998 18000 

32-5267 1/5/1999 21000 

32-5267 2/16/1999 30000 

32-5267 6/29/1999 25900 

32-5267 7/19/1999 30000 

32-5267 7/5/2000 39000 

32-5267 8/24/2001 12000 

32-5267 7/29/2003 9400 

   

32-5268 10/23/1995 230000 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-5268 10/27/1995 170000 

32-5268 11/20/1996 180000 

32-5268 2/20/1997 210000 

32-5268 2/25/1997 240000 

32-5268 2/28/1997 350000 

32-5268 3/4/1997 280000 

32-5268 3/11/1997 170000 

32-5268 3/18/1997 210000 

32-5268 4/9/1997 180000 

32-5268 5/5/1997 150000 

32-5268 6/11/1997 160000 

32-5268 7/15/1997 130000 

32-5268 8/5/1997 52000 

32-5268 9/10/1997 42000 

32-5268 10/14/1997 39000 

32-5268 11/6/1997 40000 

32-5268 11/11/1997 58000 

32-5268 12/16/1997 58000 

32-5268 1/19/1998 67000 

32-5268 2/13/1998 49000 

32-5268 3/12/1998 52000 

32-5268 4/8/1998 67000 

32-5268 4/15/1998 75000 

32-5268 5/7/1998 27000 

32-5268 7/8/1998 45000 

32-5268 8/4/1998 56000 

32-5268 8/5/1998 56000 

32-5268 9/1/1998 53000 

32-5268 10/9/1998 46000 

32-5268 10/15/1998 44000 

32-5268 11/13/1998 48000 

32-5268 12/8/1998 30000 

32-5268 1/5/1999 45000 

32-5268 2/16/1999 25000 

32-5268 6/29/1999 89800 

32-5268 7/19/1999 18000 

32-5268 7/5/2000 9800 

32-5268 8/24/2001 1400 

32-5268 7/29/2003 6200 

   

32-548 12/9/1988 10000 

32-548 8/3/1990 4000 

   

32-569 8/3/1990 0.6 

32-569 9/27/1991 5 

32-569 1/13/1992 1 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-570 8/3/1990 140 

32-570 9/25/1991 120 

32-570 1/15/1992 260 

32-570 11/19/1993 43 

32-570 5/16/1994 36 

32-570 11/10/1994 3.8 

32-570 5/22/1995 3.3 

32-570 11/1/1995 54 

32-570 4/5/1996 25 

32-570 7/31/1996 26 

32-570 11/11/1996 20 

32-570 4/24/1997 4 

32-570 7/25/1997 0.7 

32-570 11/6/1997 1 

32-570 4/14/1998 0.6 

32-570 8/4/1998 1 

32-570 10/14/1998 0.5 

32-570 6/30/1999 2 

32-570 7/11/2000 1 

32-570 8/23/2001 15 

32-570 7/29/2003 0.77 

   

32-571 8/3/1990 0.6 

32-571 9/24/1991 2 

32-571 1/15/1992 35 

32-571 11/12/1996 4 

32-571 4/18/1997 1 

32-571 7/24/1997 1 

32-571 11/6/1997 0.6 

32-571 4/21/1998 0.8 

32-571 8/4/1998 1 

32-571 10/14/1998 1 

32-571 6/15/1999 2 

32-571 7/5/2000 4 

32-571 8/23/2001 1 

32-571 7/29/2003 1 

   

32-573 8/3/1990 27 

32-573 9/24/1991 140 

32-573 1/15/1992 200 

32-573 11/19/1993 42 

32-573 5/18/1994 10 

32-573 11/9/1994 6.3 

32-573 5/22/1995 2.6 

32-573 11/3/1995 9 

32-573 4/8/1996 22 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-573 7/31/1996 14 

32-573 11/15/1996 80 

32-573 4/4/1997 32 

32-573 4/7/1997 38 

32-573 7/24/1997 8 

32-573 11/5/1997 1 

32-573 4/1/1998 1 

32-573 8/5/1998 2 

32-573 10/13/1998 0.6 

32-573 6/23/1999 2 

32-573 7/6/2000 0.7 

32-573 8/22/2001 0.53 

32-573 7/28/2003 1 

   

32-574 8/3/1990 0.6 

32-574 9/24/1991 0.5 

32-574 1/13/1992 1 

32-574 11/9/1993 1 

32-574 5/17/1994 1 

32-574 11/11/1994 1 

32-574 5/25/1995 1 

32-574 4/9/1996 7 

32-574 8/1/1996 37 

32-574 11/19/1996 12 

32-574 4/28/1997 1 

32-574 7/23/1997 1 

32-574 11/7/1997 1 

32-574 3/27/1998 1 

32-574 7/27/1998 1 

32-574 10/20/1998 0.7 

32-574 6/24/1999 2 

32-574 7/6/2000 1 

32-574 8/23/2001 1 

32-574 7/31/2003 1 

   

32-6008 9/24/1991 89 

32-6008 1/15/1992 61 

32-6008 6/29/1993 120 

32-6008 8/4/1993 51 

32-6008 8/24/1993 48 

32-6008 9/23/1993 56 

32-6008 11/9/1993 56 

32-6008 5/18/1994 50 

32-6008 11/9/1994 11 

32-6008 5/22/1995 2.4 

32-6008 11/3/1995 21 



   

85 

Well ID Date 

TCE  

(µµµµg/L) 
   

32-6008 4/8/1996 76 

32-6008 7/31/1996 58 

32-6008 11/15/1996 340 

32-6008 4/10/1997 52 

32-6008 4/10/1997 73 

32-6008 4/10/1997 50 

32-6008 7/29/1997 14 

32-6008 11/5/1997 6 

32-6008 4/1/1998 0.7 

32-6008 8/10/1998 0.8 

32-6008 10/13/1998 0.7 

32-6008 6/23/1999 2 

32-6008 7/6/2000 0.7 

32-6008 8/23/2001 1 

32-6008 7/31/2003 1 

   

32-6012 9/25/1991 270 

32-6012 1/10/1992 170 

32-6012 8/3/1993 55 

32-6012 11/11/1993 62 

32-6012 5/18/1994 31 

32-6012 11/10/1994 7 

32-6012 5/25/1995 7 

32-6012 4/9/1996 14 

32-6012 8/1/1996 5 

32-6012 11/11/1996 19 

32-6012 4/8/1997 14 

32-6012 7/10/1997 22 

32-6012 11/7/1997 11 

32-6012 3/30/1998 5 

32-6012 7/27/1998 2 

32-6012 10/8/1998 2 

32-6012 6/21/1999 2 

32-6012 7/10/2000 2 

32-6012 8/27/2001 0.77 

32-6012 7/31/2003 1 

   

32-6014 10/1/1991 -- 

32-6014 1/10/1992 15000 

32-6014 1/10/1992 -- 

32-6014 11/18/1993 45000 

32-6014 5/17/1994 110000 

32-6014 11/9/1994 73000 

   

32-6027 1/15/1992 0.5 

32-6027 8/3/1993 1 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6027 9/23/1993 1 

32-6027 11/11/1993 1 

32-6027 5/17/1994 0.3 

32-6027 11/10/1994 1 

32-6027 4/9/1996 5 

32-6027 7/31/1996 0.5 

32-6027 11/13/1996 1 

32-6027 4/15/1997 1 

32-6027 7/30/1997 1 

32-6027 11/10/1997 1 

32-6027 4/14/1998 1 

32-6027 8/11/1998 1 

32-6027 10/20/1998 1 

32-6027 6/21/1999 2 

32-6027 7/10/2000 1 

32-6027 8/23/2001 1 

32-6027 7/30/2003 1 

   

32-6029 1/15/1992 550 

32-6029 11/18/1993 590 

32-6029 5/17/1994 450 

32-6029 11/9/1994 250 

32-6029 5/30/1995 140 

32-6029 11/2/1995 73 

32-6029 4/15/1996 250 

32-6029 8/5/1996 170 

32-6029 11/15/1996 220 

32-6029 4/22/1997 57 

32-6029 7/15/1997 670 

32-6029 11/6/1997 570 

32-6029 4/14/1998 920 

32-6029 8/11/1998 3200 

32-6029 10/13/1998 1 

32-6029 5/26/1999 470 

32-6029 9/21/1999 19 

32-6029 3/14/2000 333 

32-6029 10/3/2000 1480 

32-6029 5/1/2001 140 

32-6029 10/10/2001 980 

32-6029 5/30/2002 92 

32-6029 5/5/2003 120 

32-6029 10/16/2003 170 

   

32-6031 1/10/1992 1 

32-6031 7/20/1993 0.4 

32-6031 11/9/1993 1 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6031 5/17/1994 2 

32-6031 11/11/1994 3 

32-6031 5/16/1995 1.1 

32-6031 4/8/1996 2 

32-6031 7/31/1996 2 

32-6031 11/19/1996 1 

32-6031 4/3/1997 1 

32-6031 4/3/1997 1 

32-6031 7/21/1997 0.9 

32-6031 11/6/1997 7 

32-6031 3/31/1998 0.7 

32-6031 7/28/1998 0.6 

32-6031 10/13/1998 0.6 

32-6031 6/24/1999 2 

32-6031 7/10/2000 1 

32-6031 8/27/2001 1 

32-6031 7/29/2003 1 

   

32-6033 1/10/1992 93000 

32-6033 3/16/1992 3 

32-6033 3/31/1993 4 

32-6033 7/20/1993 9 

32-6033 11/9/1993 9 

32-6033 5/17/1994 8 

32-6033 11/11/1994 6.6 

32-6033 5/16/1995 5.6 

32-6033 4/8/1996 6 

32-6033 7/31/1996 7 

32-6033 11/19/1996 7 

32-6033 4/25/1997 7 

32-6033 7/22/1997 5 

32-6033 11/6/1997 8 

32-6033 3/31/1998 5 

32-6033 7/28/1998 4 

32-6033 10/13/1998 4 

32-6033 6/24/1999 3 

32-6033 7/6/2000 2 

32-6033 8/23/2001 0.76 

32-6033 7/29/2003 1 

   

32-6042 1/15/1992 410 

32-6042 10/13/1992 153 

32-6042 11/18/1993 330 

32-6042 5/17/1994 150 

32-6042 11/9/1994 170 

32-6042 5/24/1995 320 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6042 11/2/1995 110 

32-6042 4/9/1996 120 

32-6042 7/30/1996 60 

32-6042 11/12/1996 290 

32-6042 4/17/1997 3 

32-6042 7/16/1997 0.9 

32-6042 11/7/1997 12 

32-6042 4/23/1998 0.8 

32-6042 8/4/1998 0.5 

32-6042 10/15/1998 1 

32-6042 6/15/1999 2 

32-6042 7/5/2000 1 

32-6042 8/27/2001 0.81 

32-6042 8/1/2003 1.4 

   

32-6060 9/30/1992 220 

32-6060 6/29/1993 200 

32-6060 8/4/1993 130 

32-6060 8/24/1993 130 

32-6060 9/23/1993 97 

32-6060 11/9/1993 110 

32-6060 5/16/1994 62 

32-6060 11/10/1994 19 

32-6060 5/22/1995 17 

32-6060 4/5/1996 74 

32-6060 7/31/1996 98 

32-6060 11/6/1996 2 

   

32-6061 9/25/1992 1 

32-6061 4/8/1997 1 

32-6061 7/10/1997 19 

32-6061 11/8/1997 1 

32-6061 3/26/1998 1 

32-6061 8/4/1998 1 

32-6061 10/14/1998 1 

32-6061 6/16/1999 2 

32-6061 7/11/2000 1 

32-6061 8/28/2001 1 

32-6061 7/31/2003 1 

   

32-6062 9/25/1992 1 

   

32-6063 10/2/1992 3 

32-6063 11/12/1993 2 

32-6063 5/18/1994 2 

32-6063 11/10/1994 2 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6063 5/24/1995 1.4 

32-6063 4/9/1996 2 

32-6063 7/30/1996 2 

32-6063 11/21/1996 2 

32-6063 4/28/1997 2 

32-6063 7/21/1997 2 

32-6063 11/6/1997 2 

32-6063 3/26/1998 0.9 

32-6063 7/23/1998 2 

32-6063 10/14/1998 2 

32-6063 6/28/1999 2 

32-6063 7/6/2000 2 

32-6063 8/28/2001 1.2 

   

32-6064 9/24/1992 1 

32-6064 6/29/1993 1 

32-6064 8/4/1993 1 

32-6064 8/25/1993 1 

32-6064 9/23/1993 1 

32-6064 11/12/1996 4 

32-6064 4/15/1997 0.8 

32-6064 7/16/1997 2 

32-6064 11/6/1997 5 

32-6064 4/10/1998 0.5 

32-6064 8/10/1998 0.5 

32-6064 10/19/1998 1 

32-6064 6/16/1999 2 

32-6064 7/5/2000 1 

32-6064 8/28/2001 1 

32-6064 7/31/2003 1 

   

32-6066 9/29/1992 1 

32-6066 8/3/1993 110 

   

32-6069 10/1/1992 1 

32-6069 4/8/1997 1 

32-6069 7/28/1997 1 

32-6069 11/10/1997 1 

32-6069 3/30/1998 1 

32-6069 8/4/1998 1 

32-6069 10/14/1998 1 

   

32-6070 9/25/1992 1 

32-6070 4/14/1997 1 

32-6070 7/15/1997 1 

32-6070 11/6/1997 1 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6070 4/13/1998 1 

32-6070 8/5/1998 1 

32-6070 10/15/1998 1 

32-6070 6/17/1999 2 

32-6070 6/29/2000 1 

32-6070 8/28/2001 1 

32-6070 8/5/2003 1 

   

32-6071 9/30/1992 1 

32-6071 8/3/1993 1 

32-6071 11/13/1996 1 

32-6071 4/17/1997 1 

32-6071 7/25/1997 1 

32-6071 11/7/1997 1 

32-6071 4/10/1998 1 

32-6071 8/11/1998 1 

32-6071 10/15/1998 1 

   

32-6072 10/2/1992 0.6 

32-6072 11/12/1993 1 

32-6072 5/18/1994 1 

32-6072 11/10/1994 1 

32-6072 5/24/1995 1.6 

32-6072 4/9/1996 6 

32-6072 7/31/1996 2 

32-6072 11/21/1996 3 

32-6072 4/28/1997 2 

32-6072 7/18/1997 2 

32-6072 11/6/1997 7 

32-6072 3/26/1998 2 

32-6072 7/23/1998 2 

32-6072 10/14/1998 2 

32-6072 6/28/1999 2 

32-6072 7/6/2000 1 

32-6072 8/28/2001 0.9 

32-6072 8/1/2003 1 

   

32-6073 9/9/1992 12282 

32-6073 9/14/1992 9524 

32-6073 10/1/1992 16000 

32-6073 9/23/1993 9400 

32-6073 11/18/1993 2800 

32-6073 5/17/1994 840 

32-6073 11/9/1994 8000 

32-6073 5/24/1995 8100 

32-6073 10/23/1995 34000 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6073 10/27/1995 7000 

32-6073 11/6/1995 6800 

32-6073 4/15/1996 4300 

32-6073 8/5/1996 4500 

32-6073 11/21/1996 360 

32-6073 2/20/1997 2800 

32-6073 2/25/1997 2500 

32-6073 2/28/1997 2100 

32-6073 3/4/1997 2300 

32-6073 3/11/1997 1700 

32-6073 3/18/1997 1300 

32-6073 4/9/1997 680 

32-6073 5/5/1997 390 

32-6073 6/11/1997 33 

32-6073 7/15/1997 240 

32-6073 8/5/1997 250 

32-6073 9/10/1997 300 

32-6073 10/14/1997 190 

32-6073 11/8/1997 290 

32-6073 11/11/1997 270 

32-6073 12/16/1997 460 

32-6073 1/19/1998 450 

32-6073 2/13/1998 360 

32-6073 3/12/1998 370 

32-6073 4/8/1998 560 

32-6073 4/15/1998 700 

32-6073 5/7/1998 680 

32-6073 6/9/1998 280 

32-6073 7/8/1998 230 

32-6073 8/4/1998 300 

32-6073 8/5/1998 310 

32-6073 9/1/1998 180 

32-6073 10/9/1998 190 

32-6073 10/15/1998 170 

32-6073 11/13/1998 270 

32-6073 12/8/1998 190 

32-6073 1/5/1999 290 

32-6073 2/16/1999 280 

32-6073 6/23/1999 242 

32-6073 7/19/1999 430 

32-6073 7/5/2000 280 

32-6073 8/24/2001 69 

32-6073 8/1/2003 39 

   

32-6074 9/9/1992 777332 

32-6074 9/16/1992 728019 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6074 10/2/1992 390000 

32-6074 6/29/1993 490000 

32-6074 8/4/1993 560000 

32-6074 8/24/1993 730000 

32-6074 9/23/1993 710000 

32-6074 11/11/1993 450000 

32-6074 12/13/1993 760000 

32-6074 3/2/1994 270000 

32-6074 3/14/1994 590000 

32-6074 5/17/1994 790000 

32-6074 11/10/1994 940000 

32-6074 5/17/1995 440000 

32-6074 10/23/1995 600000 

32-6074 10/27/1995 620000 

32-6074 4/8/1996 530000 

32-6074 7/31/1996 840000 

32-6074 11/20/1996 770000 

32-6074 2/20/1997 520000 

32-6074 2/25/1997 420000 

32-6074 2/28/1997 310000 

32-6074 3/4/1997 410000 

32-6074 3/11/1997 290000 

32-6074 3/18/1997 210000 

32-6074 4/9/1997 190000 

32-6074 5/5/1997 160000 

32-6074 6/11/1997 150000 

32-6074 7/15/1997 120000 

32-6074 8/5/1997 240000 

32-6074 9/10/1997 110000 

32-6074 10/14/1997 120000 

32-6074 11/8/1997 96000 

32-6074 11/11/1997 72000 

32-6074 12/16/1997 51000 

32-6074 1/19/1998 51000 

32-6074 2/13/1998 50000 

32-6074 3/12/1998 54000 

32-6074 4/8/1998 72000 

32-6074 4/15/1998 86000 

32-6074 5/7/1998 92000 

32-6074 6/9/1998 84000 

32-6074 7/8/1998 67000 

32-6074 8/4/1998 69000 

32-6074 8/5/1998 71000 

32-6074 9/1/1998 59000 

32-6074 10/9/1998 88000 

32-6074 10/20/1998 52000 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6074 11/13/1998 84000 

32-6074 12/8/1998 58000 

32-6074 1/5/1999 85000 

32-6074 2/16/1999 75000 

32-6074 6/29/1999 46700 

32-6074 7/19/1999 50000 

32-6074 7/5/2000 45000 

32-6074 8/24/2001 6300 

32-6074 8/1/2003 2000 

   

32-6122 9/17/1993 61000 

32-6122 9/20/1993 920 

32-6122 12/3/1993 420000 

   

32-6127 12/19/1994 310 

32-6127 12/19/1994 180 

32-6127 5/25/1995 130 

32-6127 11/2/1995 180 

32-6127 11/22/1996 80 

32-6127 4/21/1997 48 

32-6127 7/29/1997 36 

32-6127 11/11/1997 17 

32-6127 4/23/1998 17 

32-6127 8/11/1998 18 

32-6127 10/19/1998 22 

32-6127 6/28/1999 2 

32-6127 7/11/2000 3 

32-6127 8/28/2001 1.6 

32-6127 8/1/2003 12 

   

32-6132 11/2/1995 400 

32-6132 4/9/1996 93 

32-6132 7/31/1996 140 

32-6132 11/14/1996 85 

32-6132 4/21/1997 102 

32-6132 7/29/1997 110 

32-6132 11/7/1997 170 

32-6132 4/21/1998 180 

32-6132 8/6/1998 130 

32-6132 10/19/1998 110 

32-6132 6/22/1999 115 

32-6132 7/10/2000 81 

32-6132 8/27/2001 44 

32-6132 7/30/2003 40 

   

32-6134 10/23/1995 63000 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6134 10/27/1995 44000 

32-6134 4/16/1996 110000 

32-6134 8/2/1996 100000 

32-6134 11/22/1996 86000 

32-6134 2/20/1997 66000 

32-6134 2/25/1997 91000 

32-6134 2/28/1997 120000 

32-6134 3/4/1997 99000 

32-6134 3/11/1997 79000 

32-6134 3/18/1997 75000 

32-6134 4/9/1997 59000 

32-6134 5/5/1997 59000 

32-6134 6/11/1997 63000 

32-6134 7/15/1997 44000 

32-6134 8/5/1997 1700 

32-6134 9/10/1997 11000 

32-6134 10/14/1997 4800 

32-6134 11/8/1997 13000 

32-6134 11/11/1997 11000 

32-6134 12/16/1997 28000 

32-6134 1/19/1998 22000 

32-6134 2/13/1998 22000 

32-6134 3/12/1998 22000 

32-6134 4/8/1998 14000 

32-6134 4/15/1998 25000 

32-6134 5/7/1998 2200 

32-6134 6/9/1998 24000 

32-6134 7/8/1998 13000 

32-6134 8/4/1998 14000 

32-6134 8/5/1998 12000 

32-6134 9/1/1998 12000 

32-6134 10/9/1998 10000 

32-6134 10/20/1998 9100 

32-6134 11/13/1998 8400 

32-6134 12/8/1998 6600 

32-6134 1/5/1999 3500 

32-6134 2/16/1999 3800 

32-6134 6/29/1999 884 

32-6134 7/19/1999 2200 

32-6134 7/5/2000 1900 

32-6134 8/24/2001 670 

32-6134 8/1/2003 1500 

   

32-6135 11/14/1995 2900 

32-6135 4/11/1996 3100 

32-6135 7/31/1996 4500 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6135 11/11/1996 3100 

32-6135 4/18/1997 1500 

32-6135 7/24/1997 900 

32-6135 11/7/1997 910 

32-6135 4/24/1998 730 

32-6135 8/6/1998 300 

32-6135 10/21/1998 290 

32-6135 6/15/1999 138 

32-6135 7/6/2000 61 

32-6135 8/27/2001 15 

32-6135 7/31/2003 7.4 

   

32-6141 10/23/1995 8100 

32-6141 10/27/1995 6800 

32-6141 11/2/1995 12000 

32-6141 4/16/1996 4800 

32-6141 8/5/1996 4000 

32-6141 11/20/1996 7700 

32-6141 2/20/1997 5200 

32-6141 2/25/1997 3900 

32-6141 2/28/1997 5100 

32-6141 3/4/1997 3600 

32-6141 3/11/1997 3000 

32-6141 3/18/1997 2900 

32-6141 4/9/1997 2400 

32-6141 5/5/1997 1800 

32-6141 6/11/1997 1400 

32-6141 7/15/1997 1300 

32-6141 8/5/1997 1500 

32-6141 9/10/1997 1200 

32-6141 10/14/1997 1300 

32-6141 11/10/1997 1300 

32-6141 11/11/1997 1400 

32-6141 12/16/1997 660 

32-6141 1/19/1998 560 

32-6141 2/13/1998 470 

32-6141 3/12/1998 570 

32-6141 4/8/1998 510 

32-6141 4/15/1998 610 

32-6141 5/7/1998 560 

32-6141 6/9/1998 470 

32-6141 7/8/1998 440 

32-6141 8/4/1998 550 

32-6141 8/5/1998 470 

32-6141 9/1/1998 440 

32-6141 10/9/1998 380 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-6141 10/20/1998 350 

32-6141 11/13/1998 140 

32-6141 12/8/1998 320 

32-6141 1/5/1999 430 

32-6141 2/16/1999 360 

32-6141 6/29/1999 355 

32-6141 7/19/1999 320 

32-6141 7/5/2000 210 

32-6141 8/24/2001 94 

32-6141 7/31/2003 18 

   

32-616 12/13/1988 2.8 

32-616 5/16/1989 2.4 

32-616 5/16/1989 5.1 

32-616 8/3/1990 2.9 

32-616 9/27/1991 980 

32-616 1/15/1992 480 

32-616 6/29/1993 380 

32-616 8/5/1993 22000 

32-616 8/25/1993 22000 

32-616 9/21/1993 23000 

32-616 9/21/1993 24000 

32-616 11/1/1993 8100 

32-616 11/18/1993 10000 

32-616 12/14/1993 6500 

32-616 3/2/1994 4500 

32-616 3/14/1994 4800 

32-616 5/17/1994 3900 

32-616 10/17/1994 1600 

32-616 5/16/1995 1400 

32-616 11/6/1995 490 

32-616 4/8/1996 4300 

32-616 7/30/1996 720 

32-616 11/22/1996 1100 

32-616 11/7/1997 61 

32-616 4/23/1998 120 

32-616 8/12/1998 55 

32-616 10/21/1998 46 

   

32-632 8/3/1990 2.5 

32-632 9/24/1991 5 

32-632 1/15/1992 40 

32-632 11/9/1993 11 

32-632 5/18/1994 34 

32-632 11/11/1994 14 

32-632 5/22/1995 4.9 
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Well ID Date 

TCE  

(µµµµg/L) 
   

32-632 11/3/1995 13 

32-632 4/8/1996 23 

32-632 7/30/1996 29 

32-632 11/25/1996 94 

32-632 4/4/1997 35 

32-632 4/7/1997 67 

32-632 7/30/1997 32 

32-632 11/5/1997 20 

32-632 4/1/1998 21 

32-632 8/5/1998 15 

32-632 10/13/1998 12 

32-632 6/23/1999 8 

32-632 7/17/2000 4 

32-632 8/28/2001 1.3 

32-632 7/31/2003 1 

   

32-633 8/3/1990 0.6 

32-633 9/24/1991 0.5 

32-633 1/13/1992 3 

32-633 11/19/1996 4 

32-633 4/29/1997 3 

32-633 7/23/1997 3 

32-633 11/7/1997 5 

32-633 3/30/1998 3 

32-633 7/27/1998 3 

32-633 10/15/1998 3 

   

32-7205 11/10/1997 1 

32-7205 4/15/1998 1 

32-7205 8/3/1998 1 

32-7205 10/21/1998 1 

   

32-7548 11/13/1992 5 

   

32-7854 11/14/1996 110 

32-7854 4/18/1997 67 

32-7854 7/16/1997 13 

32-7854 11/10/1997 4 

32-7854 4/23/1998 1 

32-7854 8/12/1998 0.7 

32-7854 10/21/1998 2 

32-7854 6/15/1999 2 

32-7854 7/6/2000 0.6 

32-7854 8/27/2001 0.69 

32-7854 7/30/2003 0.53 
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